Nouveau corrigé

COMMENT MESURER UN QUOTIENT DE RÉACTION D'UN SYSTÈME CHIMIQUE À L'ÉTAT D'ÉQUILIBRE ?

I DÉTERMINATION PAR CONDUCTIMÉTRIE DU QUOTIENT DE RÉACTION À L'ÉQUILIBRE Q_{r.éq} DE LA REACTION ENTRE L'ACIDE METHANOÏQUE ET L'EAU

① équation de la réaction de l'acide méthanoïque HCOOH(aq) avec l'eau :

$$HCOOH_{(aq)} + H_2O_{(I)} = HCOO^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

A l'équilibre, on a donc présence d'acide méthanoïque, d'eau, d'ion méthanoate et d'ion oxonium.

② quotient de réaction dans l'état d'équilibre :
$$Q_{r,eq} = \frac{[HCOO^-]_{eq} \cdot [H_3O^+]_{eq}}{[HCOOH]_{eq}}$$

Les concentrations sont exprimées en mol. L⁻¹. Q_{r,eq} est sans unité

l'ion méthanoate et de l'ions oxonium.

On considère un volume V de solution aqueuse.

tableau descriptif de l'évolution du système chimique :

Équation de la réaction	HCOOH _(aq) +	H ₂ O _(I) =	HCOO ⁻ (aq) +	H ₃ O ⁺ (aq)
État initial	cV	solvant	0	0
Etat intermédiaire	cV-x	solvant	×	×
État final	cV-x _{eq}	solvant	Xeq	Xeq

① Concentration finale d'acide méthanoïque :
$$\left[HCOOH\right]_f = \frac{cV - x_{\acute{e}q}}{V} = c - \frac{x_{\acute{e}q}}{V}$$

Concentration finale d'ion méthanoate :
$$\left[HCOO^{-}\right]_{f} = \frac{X_{\acute{eq}}}{V}$$

Concentration finale d'ion oxonium :
$$\left[H_3O^+\right]_f = \frac{x_{\acute{e}q}}{V}$$

Or, d'après la question précédente :
$$\left[|HCOOH|_f = c - \left[H_3O^+ \right]_f \right]$$
 et $\left[|HCOO^-|_f = \left[H_3O^+ \right]_f \right]$

D'où:
$$Q_{r,eq} = \frac{[H_3O^+]_f^2}{c - [H_3O^+]_f}$$
 c et $[H_3O^+]_f$ étant exprimées en mol.L⁻¹; Q_r est sans unité.

Il nous faut donc connaître la valeur de la concentration des ions oxonium dans l'état final $\left[H_3O^+\right]_f$ pour pouvoir calculer le quotient de réaction Q_r . Pour cela, il faut faire une mesure expérimentale : soit mesurer le pH, soit la conductivité de la solution.

Mesure : on mesure $\sigma = 0.314 \text{ mS.cm}^{-1} = 31.4.10^{-3} \text{ S.m}^{-1}$

© Les ions présents dans la solution aqueuse d'acide méthanoïque $HCOOH_{(aq)}$ dans l'état d'équilibre sont les ions méthanoate $HCOO^-_{(aq)}$ et les ions oxonium $H_3O^+_{(aq)}$.

Expression de la conductivité σ : σ = $(\lambda_{HCOO^-}[HCOO^-]_f + \lambda_{H_3O^+}[H_3O^+]_f)$ Les concentrations sont exprimées en mol.m⁻³; σ en S.m⁻¹ et λ en S.m².mol⁻¹.

A.N.:
$$\left[H_3O^+\right]_f = \frac{31.4 \cdot 10^{-3}}{5.46 \cdot 10^{-3} + 35.0 \cdot 10^{-3}} = \frac{31.4}{40.46} = 0.776 \text{ mol.m}^{-3} = 0.776 \cdot 10^{-3} \text{ mol.L}^{-1}$$

$$Q_{r,eq} = \frac{[H_3O^+]_f^2}{c - [H_3O^+]_f} = \frac{(0,776 \cdot 10^{-3})^2}{5,0 \cdot 10^{-3} - 0,776 \cdot 10^{-3}} = 1,43 \cdot 10^{-4}$$
 (sans unité!)

® Taux d'avancement final d'une transformation : $\tau = \frac{x_{\acute{e}q}}{x_{max}}$

D'après le tableau d'avancement, l'avancement final (avancement à l'équilibre) est :

$$x_f = n_{H3O^+}^{(final)} = [H_3O^+]_f. V$$

Si la transformation était totale, l'acide méthanoïque serait entièrement consommé à l'état final : $cV - x_{max} = 0$ On en déduit l'avancement maximal : $x_{max} = cV$

L'expression du taux d'avancement final τ est donc : $\tau = \frac{x_{\acute{e}q}}{x_{max}} = \frac{\left[H_3O^+\right]_f \times V}{c \times V} = \frac{\left[H_3O^+\right]_f}{c}$

Les concentrations doivent être exprimées dans la même unité (par exemple en mol.L⁻¹). Le taux d'avancement s'exprime sans unité.

II Expérience

1) conductivité de solutions d'acide éthanoïque de différentes concentrations

On mesure la conductivité σ_i des solutions d'acide éthanoïque de concentration molaire apportée ci:

Solution d'acide éthanoïque	54	S ₃	S ₂	S ₁
c _i en mol.L ⁻¹	1,00.10 ⁻³	2,00.10 ⁻³	5,00.10 ⁻³	1,00.10 ⁻²
σ_i en mS.cm ⁻¹	0,042	0,062	0,100	0,140
σ _i en S.m ⁻¹	4,2 . 10 ⁻³	6,2 . 10 ⁻³	10,0 . 10-3	14,0 . 10 ⁻³

2) conductivité de solutions de différents acides

On mesure la conductivité σ de solutions de concentration $c = 5,00.10^{-3}$ mol. L^{-1} :

Solution d'acide	éthanoïque	méthanoïque	benzoïque
σ_i en mS.cm ⁻¹	0,100	0,314	0,185
σ_i en S.m ⁻¹	10,0 . 10 ⁻³	31,4 . 10 ⁻³	18,5 . 10 ⁻³

III Exploitation

- 1) La concentration molaire apportée c en soluté représente la quantité de soluté qu'il faut dissoudre pour obtenir 1 L de solution.
- 2) Pour toutes les solutions étudiées, l'état d'équilibre chimique est atteint puisque la conductivité de la solution n'évolue pas.
- 3) D'après l'étude de la réaction entre un acide et l'eau du I, on a :

Ci	[H₃O ⁺]	[CH ₃ COO ⁻]	[CH₃COOH]	Q _{r,eq}	$\tau = x_f/x_{max}$
(mol.L ⁻¹)	(mol.L ⁻¹)	(mol.L ⁻¹)	(mol.L ⁻¹)		(pourcentage)
1,00. 10 ⁻²	3,58 . 10 ⁻⁴	3,58 . 10 ⁻⁴	9,6 . 10 ⁻³	1,3. 10 ⁻⁵	3,58 %
5,00. 10 ⁻³	2,56 . 10 ⁻⁴	2,56 . 10 ⁻⁴	4,74 . 10 ⁻³	1,38. 10 ⁻⁵	5,12 %
2,00. 10 ⁻³	1,6 . 10 ⁻⁴	1,6 . 10 ⁻⁴	1,84. 10 ⁻³	1,4. 10 ⁻⁵	8,0 %
1,00. 10 ⁻³	1,1 . 10 ⁻⁴	1,1 . 10 ⁻⁴	8,9 . 10 ⁻⁴	1,4. 10 ⁻⁵	11 %

4) Les valeurs de $Q_{r,\acute{e}q}$ sont pratiquement constantes aux erreurs expérimentales près. Le quotient de réaction à l'équilibre ne dépend pas de l'état initial.

On remarque que plus la solution est diluée, plus le taux d'avancement est grand.

L'état initial a donc une influence sur le taux d'avancement final.

5) D'après l'étude de la réaction entre un acide et l'eau du I, on a :

$$\begin{split} \left[H_{3}O^{+}\right]_{f} &= \frac{\sigma}{\lambda_{A^{-}} + \lambda_{H_{3}O^{+}}} en \; mol.m^{-3} & On \; convertit \; ensuite : 1 \; mol.m^{-3} = 10^{-3} \; mol.L^{-1} \\ \left[A^{-}\right]_{f} &= \left[H_{3}O^{+}\right]_{f} & et \; \left[AH\right]_{f} = c - \left[H_{3}O^{+}\right]_{f} & donn\acute{e} : \lambda(C_{6}H_{5}CO_{2}^{-}) = 3,23.10^{-3} \; S.m^{2}.mol^{-1} \\ Q_{r,eq} &= \frac{\left[A^{-}\right]_{eq}.\left[H_{3}O^{+}\right]_{eq}}{\left[AH\right]_{eq}} & \tau = \frac{\left[H_{3}O^{+}\right]_{f}}{c} \end{split}$$

Solution	[H₃O ⁺]	[A ⁻]	[AH]	Qr,eq	$\tau = x_f/x_{max}$
d'acide :	$(mol.L^{-1})$	(mol.L ⁻¹)	(mol.L ⁻¹)		(pourcentage)
éthanoïque	2,56 . 10 ⁻⁴	2,56 . 10 ⁻⁴	4,74 . 10 ⁻³	1,38. 10 ⁻⁵	5,12 %
méthanoïque	7,76 . 10 ⁻⁴	7,76 . 10 ⁻⁴	4,22 . 10 ⁻³	1,43. 10 ⁻⁴	15,5 %
benzoïque	4,84 . 10 ⁻⁴	4,84 . 10 ⁻⁴	4,52 . 10 ⁻³	5,18. 10 ⁻⁵	11,7 %

- 6) Selon la nature de l'acide, on obtient des valeurs différentes pour le quotient de réaction à l'équilibre et pour le taux d'avancement final. Le quotient de réaction à l'équilibre dépend de la réaction étudiée.

On prélève 0,600 g d'acide éthanoïque que l'on verse dans une fiole jaugée de 1,00 L. On complète avec de l'eau distillée jusqu'au $\frac{3}{4}$. On bouche et on agite. On complète soigneusement (en utilisant une pipette simple) avec de l'eau distillée jusqu'au trait de jauge. On bouche et on agite. La solution S_1 est prête.

Si on n'a pas de balance, on peut aussi calculer le volume d'acide éthanoïque pur à prélever : V_{acide} = m_{acide} / μ_{acide} = 0,600/(1,22.10³) = 0,492.10⁻³ L = 0,492 mL \approx 0,5 mL. La solution préparée ne serait pas très précise....

8) On peut préparer la solution S_4 d'acide éthanoïque par dilution de la solution S_1 . Le facteur de dilution est $F = V_4/V_1 = c_1/c_4 = 10,0$

(On a $c_1 V_1 = c_4 V_4$ car la quantité de soluté se conserve au cours de la dilution.)

Pour obtenir V_4 = 100,0 mL de solution S_4 , il faut prélever V_1 = V_4/F = 10,0 mL de solution S_1 . On prélève 10,0 mL de solution mère S_1 (placée dans un bécher) à l'aide d'une pipette jaugée de 10,0 mL. On verse ce prélèvement dans une fiole jaugée de 100,0 mL. On complète avec de l'eau distillée jusqu'au $\frac{3}{4}$. On bouche et on agite. On complète soigneusement (en utilisant une pipette simple) avec de l'eau distillée jusqu'au trait de jauge. On bouche et on agite. La solution fille S_4 est prête.