
Chapitre 2 : Etude des grandes voies métaboliques cellulaires

Connaissances Capacités Exploiter des ressources documentaires pour : localiser au sein de la cellule quelques voies cataboliques : Le **métabolisme cellulaire** est constitué par glycolyse, cycle de Krebs, chaîne respiratoire; l'ensemble des voies métaboliques d'une cellule. repérer et annoter les étapes d'oxydoréduction et de synthèse L'ensemble des voies conduisant à la d'ATP des voies cataboliques : la glycolyse, le cycle de Krebs, dégradation de substrats et à la production la chaîne respiratoire aérobie, la fermentation lactique ou d'ATP est appelé le catabolisme. alcoolique; établir les bilans d'énergie et de matière de l'utilisation du L'ensemble des voies conduisant à la synthèse glucose par respiration et par fermentation; de molécules constitutives de l'organisme est calculer un rendement énergétique en ATP; appelé anabolisme. - identifier une voie anabolique par la consommation d'ATP associée à l'utilisation de coenzymes réduits.

Rappels: Catabolisme et anabolisme

Cf Chapitre 1-1-: notion de système et présentation du métabolisme cellulaire

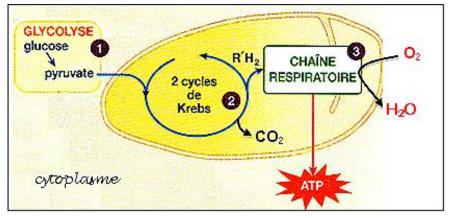
1.	Classer les molécules présentes sur le document par nombre croissant de liaisons C-C présentes dans chaque molécule.
2.	Compléterles définitions d'une voie catabolique et d'une voie anabolique.
<u> </u>	Voie catabolique : ensemble des voies conduisant à la
	Une voie catabolique aboutit à une
	<u>Voie anabolique</u> : ensemble des voies dede molécules.
	Une voie anabolique aboutit à une du nombre de carbone des
	molécules et

Activité 1 : Les voies métaboliques du catabolisme du glucose

Les cellules utilisent comme nutriment principal le glucose.

A partir du document ci-dessous, indiquer le devenir possible du glucose dans une cellule.

glucose C ₆ H ₁₂ O ₆ glu	cose
C ₆ H ₁₂ O ₆	1
2 ADP + 2 Pi	2T
Act of the second	GLYCOLYSE
ATP &	2 TH, H⁺ \
/	+
	pyruvique
(ou p	yruvate)
0	
1000000	en anaérobiose
	FERMENTATION
	1 EKWENTANON
	* /
en a	érobiose /
The state of the s	(100)
	Carlo
1	A CONTRACTOR OF THE PARTY OF TH
The same of the sa	CO2
The state of the s	AL SALES AND AND ADDRESS OF THE PARTY OF THE

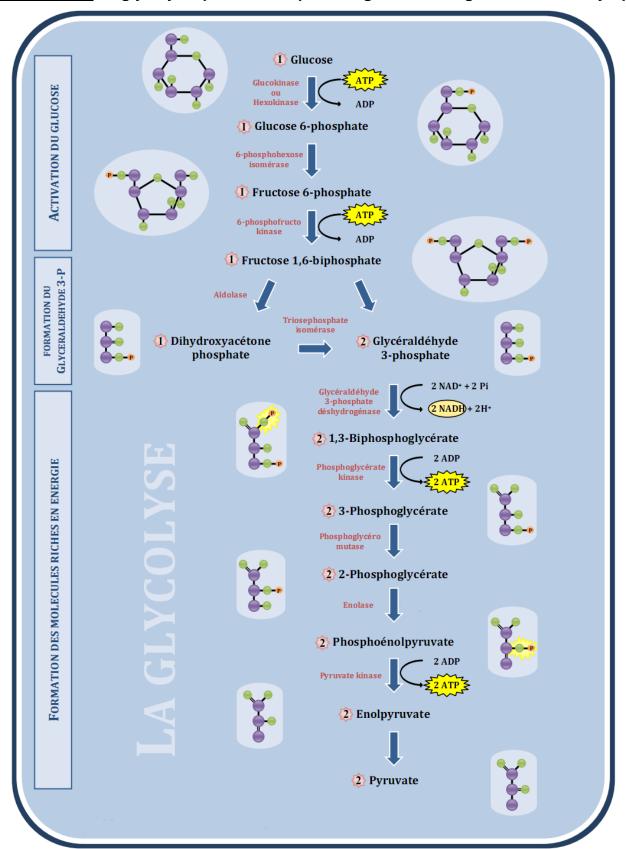

Selon les conditions d'oxygénation, **deux voies** de dégradation du glucose peuvent être utilisées.

-	Dans les 2 cas, la même voie est empruntée au
	départ :

En aérobiose, l'acide pyruvique	
<i>En anaérobiose,</i> l'acide pyruvique	

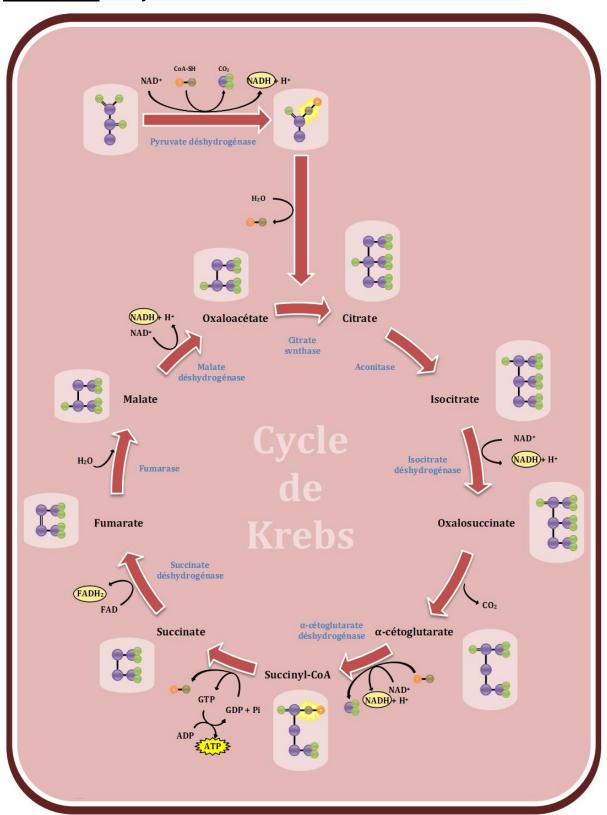
Activité 2 : Les voies du catabolisme du glucose en aérobiose

<u>Document 1 : les grandes étapes de la dégradation cellulaire du glucose</u>


Question:

A partir du document 1 et des connaissances :

- indiquer le devenir du glucose dans la cellule en aérobiose et le rôle de la respiration cellulaire,
- localiser les différentes réactions au niveau de la cellule.



Document 2 : la glycolyse, première étape de dégradation du glucose dans le cytoplasme

1.	Ecrire l'équation chimique de réaction correspondant à la 1ère étape de la glycolyse. D'après les connaissances acquises sur le couplage de deux réactions, indiquer le rôle de la molécule d'ATP présente dans la réaction.			
2. 	Pourquoi les molécules de la deuxième moitié de	la glycolyse présentent 2 molécules ?		
3.	Surligner ou entourer le(s) étape(s) d'oxydoréduc	tion de la glycolyse. Justifier votre réponse.		
Le	Ecrire le bilan de matière de la glycolyse s molécules d'un bilan de matière sont celles comp	ortant les carbones de la molécule de départ. O)n	
	es ont été consommées ou produites.	Les autres molécules (NAD+, ATP) doivent figure		
	es ont été consommées ou produites. Molécules entrantes dans la voie	Les autres molécules (NAD+, ATP) doivent figure Molécules sortantes de la voie		
	es ont été consommées ou produites.	Les autres molécules (NAD+, ATP) doivent figure		
	es ont été consommées ou produites. Molécules entrantes dans la voie	Les autres molécules (NAD+, ATP) doivent figure Molécules sortantes de la voie		
	Molécules entrantes dans la voie = réactifs consommés	Les autres molécules (NAD+, ATP) doivent figure Molécules sortantes de la voie		
	Molécules entrantes dans la voie = réactifs consommés	Les autres molécules (NAD+, ATP) doivent figure Molécules sortantes de la voie		

Document 3: Le cycle de Krebs dans la matrice des mitochondries

Donnée : 3 molécules d'H₂O entrent dans la transformation du pyruvate en CO₂

Thème 2 : Les systèmes vivants échangent de la matière et de l'énergie

Chapitre 2 : Le métabolisme cellulaire : voies anaboliques et cataboliques

	5.	Etablir le	bilan de	matière (de la	transforma	ation di	u pyruva	ate en C0	\mathcal{O}_{2}
--	----	------------	----------	-----------	-------	------------	----------	----------	-----------	-------------------

Molécules entrantes dans la voie = réactifs consommés	Molécules sortantes de la voie = Produits formés
Après simplification, en bilan :	

Bilan du cycle de Krebs :		

- 6. « La transformation du pyruvate en CO₂ est une oxydation ». Justifier la réponse en surlignant le(s) étape(s) d'oxydoréduction au niveau du cycle.
- 7. Etablir le bilan de matière de la transformation du glucose en CO_{2..}

D'après la glycolyse :

D'après le cycle de Krebs:

Bilan de matière de l'oxydation du glucose en CO2:

RESUME

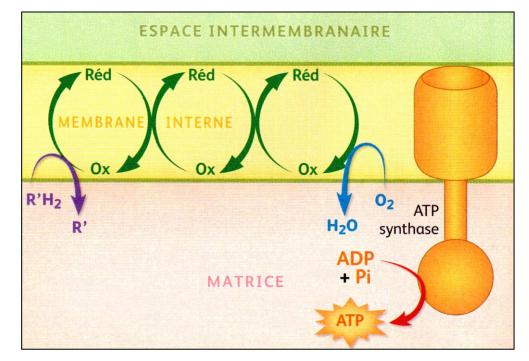
Le cycle de Krebs permet l'oxydation du pyruvate en puis en puis en

Le cycle de Krebs représente l'étape finale du catabolisme des glucides qui ont été dégradés sous forme de Les coenzymes réduits (NADH,H⁺ et FADH₂) formés subiront ensuite une réoxydation au niveau de la chaine respiratoire.

Document 4: La réoxydation des composés réduits et l'intervention du dioxygène

Les coenzymes NAD+ et FAD (R) sont en quantité limitée dans la cellule. S'ils sont réduits (RH₂), la cellule doit les réoxyder grâce à la chaine respiratoire mitochondriale localisée au niveau des crêtes (replis) de la membrane interne des mitochondries.

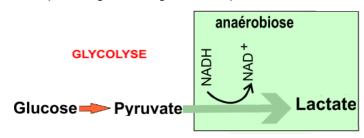
La réoxydation des coenzymes est couplée à la **réduction du dioxygène** et à la **production d'ATP** par une ATP synthase.


La réoxydation d'une molécule de coenzyme réduit permet la production de :

- > 3 molécules d'ATP par molécule de NADH,H⁺
- 2 molécules d'ATP par molécule de FADH₂
- 8. Etablir un bilan d'énergie : calculer le nombre de molécules d'ATP produites à partir d'une molécule de glucose.

Etape	Coenzymes réduits formés	ATP formés lors de la réoxydation des coenzymes réduits	ATP formés directement	Molécules d'ATP formées au total		
Glycolyse						
Cycle de Krebs						
	Bilan en ATP de la respiration cellulaire					

L'oxydation d'une molécule de glucose en aérobiose libère donc molécules



Activité 3 : Les voies du catabolisme du glucose en anaérobiose

En absence d'oxygène, certaines cellules réalisent une **fermentation** : dégradation anaérobie de la matière organique.

Exemple : la cellule musculaire peut dégrader le glucose et produire de l'acide lactique.

<u>Remarque</u>: Dans le muscle, en absence d'oxygène, par exemple à cause d'un effort trop intense et prolongé, les cellules musculaires se mettent à produire de l'acide lactique.

1. Rappeler le bilan de matière de la glycolyse et établir le bilan de matière de la transformation du pyruvate en lactate.

Bilan de la glycolyse :

Bilan de la transformation du pyruvate en lactate :

2. Etablir le bilan de matière de la transformation du glucose en lactate appelée « fermentation lactique ».

Bilan de matière de la fermentation lactique

3. Indiquer le nombre de moles d'ATP produites à partir d'une molécule de glucose.

RESUME				
La dégradation du glucose est une voie qui permet la formation d'ATP.				
<u>Deux voies coexistent</u> : →une dégradation complète du glucose en CO ₂ , qui ne peut se faire qu'en conditions aérobies, c'est-à-dire en présence d'O ₂ . On parle de				
→une dégradation incomplète qui, en conditions anaérobies (manque ou absence d'O2). On parle de				
VOIE:				
VOIE:				

Activité 4 : Comparaison entre respiration cellulaire et fermentation lactique

Questions

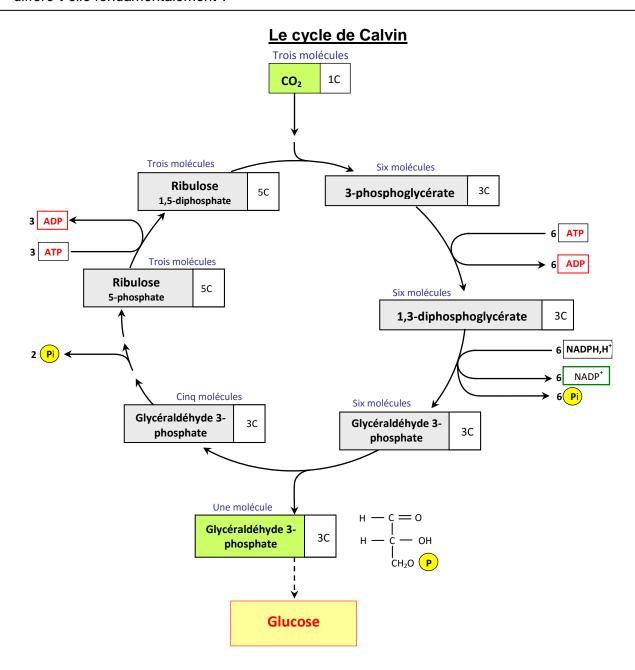
- 1. Rappeler dans le tableau les bilans d'énergie de l'utilisation d'une molécule de glucose parrespiration et par fermentation (ATP produits).
- 2. Calculer les rendements énergétiques en ATP lors de la respiration et de la fermentation et compléter le tableau.
- 3. Comparer les 2 résultats. Conclure sur le processus le plus intéressant d'un point de vue énergétique pour la cellule.

Données:

- Rendement énergétique = (quantité d'énergie récupérée sous forme d'ATP / quantité d'énergie chimique potentielle du glucose) x 100
- L'énergie chimique potentielle d'une mole de glucose est égale à 2860 kJ (= quantité de chaleur dégagée par la combustion complète d'une mole de glucose en CO_2) $\Delta_r G^\circ$ ' combustion= 2860 kJ/mol
- $\Delta_r G^{\circ \prime}_{hydrolyse ATP} = -30 \text{ kJ.mol}^{-1}$

	Respiration	Fermentation lactique
ATP produits par l'oxydation d'une molécule de glucose		
Rendement énergétique		

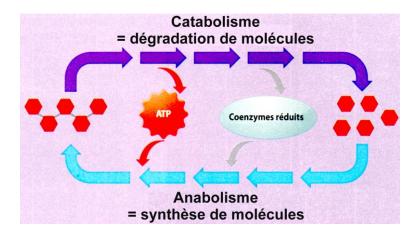
Activité 5 : Etude d'une voie anabolique : le cycle de Calvin


L'anabolisme correspond à l'ensemble des voies consommatrices d'ATP permettant la synthèse de composés cellulaires.

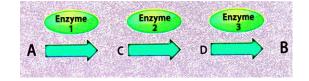
Le cycle de Calvin est un ensemble de réactions réalisées par les organismes photosynthétiques pour produire leurs molécules de glucose lors de la phase chimique de la photosynthèse.

Les plantes fixent le CO₂ pour produire du glycéraldéhyde 3 phosphate (G3P), molécule qui joue un rôle de précurseur de la synthèse du glucose.

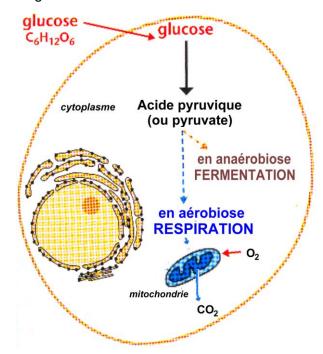
Questions


- 1. Surligner le(s) étape(s) mettant en jeu des coenzymes d'oxydoréduction. Y a-t-il oxydation ou réduction des coenzymes ?
- 2. Surligner les étapes de consommation de molécules d'ATP
- 3. Surligner les étapes de production de molécules d'ATP.
- 4. Par comparaison aux voies cataboliques évoquées précédemment, en quoi une voie anabolique diffère-t-elle fondamentalement ?

RECAPITULATIF

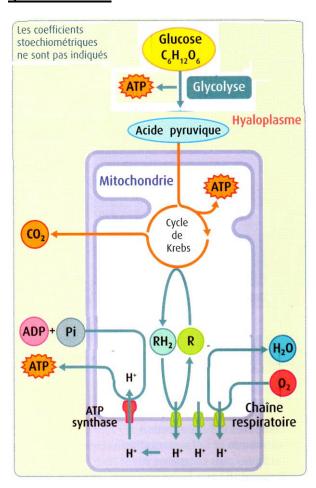

Chapitre 2 : Etude des grandes voies métaboliques cellulaires

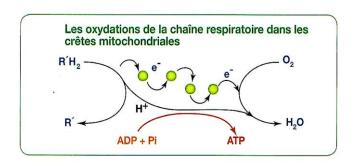
Métabolisme = catabolisme + anabolisme


> Voie métabolique :

Ensemble des réactions **catalysées pardes enzymes** mises en œuvre par la cellule pour transformer une molécule A en molécule B.(Voir Chapitre 1-1)

> Exemple de voies cataboliques : la dégradation du glucose

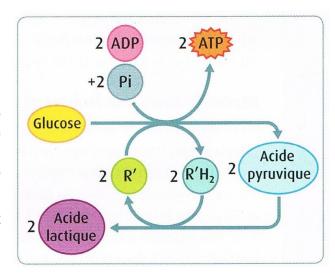

Toutes les cellules eucaryotes puisent l'énergie nécessaire à leur métabolisme dans l'oxydation de molécules organiques comme le glucose.



⇒ La respiration cellulaire :

Le glucose est totalement oxydé<u>en CO_2 en présence</u> d' O_2 : il y a<u>production d'ATP</u>et de<u>coenzymes</u> <u>réduits</u> (RH₂ = NADH,H+ ...)

Les coenzymes réduits sont réoxydés par la chaîne respiratoire : les électrons sont transférés jusqu'àun accepteur final qui est le dioxygène. Ces oxydoréductions permettent la production <u>d'une grande</u> guantité d'ATP.


\Rightarrow La fermentation lactique :

En absence de dioxygène, les cellules dégradent le glucose de façon incomplète.

Le glucose est oxydé par glycolyse. L'acide pyruvique formé est réduit en **acide lactique** dans le cytoplasme, ce qui permet la **réoxydation** des **coenzymes réduits** (R'H₂= (NADH + H+)).

Au cours des fermentations, seule la glycolyse permet de produire de l'ATP.

L'oxydation incomplète d'une molécule de glucose permet la production de <u>2 molécules d'ATPseulement.</u>

Une fermentation produit de l'ATP avec un rendement beaucoup plus faible que la respiration.

CONCLUSION:

<u>Respiration et fermentation</u> sont deux processus d'oxydation de la matière organique qui permettent aux cellules de produire de l'énergie. L'énergie libérée par ces réactions permet <u>la synthèse d'ATP.</u>

Les cellules pour croître et se multiplier effectuent des **réactions anaboliques** qui <u>consomment ces</u> <u>molécules d'ATP</u> (intermédiaire énergétique indispensable aux cellules).