Corrigé du contrôle 6

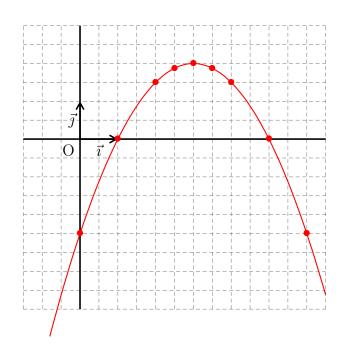
Exercice 1:

Soit f la fonction définie sur \mathbb{R} par $f(x) = -\frac{1}{2}(x-3)^2 + 2$. On note \mathscr{P} sa courbe représentative dans un repère orthonormé du plan.

1. Donner les réels a, α et β correspondant à la fonction f. $a=-\frac{1}{2}, \, \alpha=3 \text{ et } \beta=2.$

- 2. Donner les coordonnées du sommet S de \mathscr{P} ainsi que son axe de symétrie. S(3; 2). \mathscr{P} a pour axe de symétrie la droite d'équation x=3. (droite parallèle à l'axe des ordonnées)
- 3. Tracer \mathscr{P} dans le repère donné ci-dessous. Vous justifierez votre démarche \mathscr{P} étant symétrique par rapport à l'axe des ordonnées, il suffit de calculer les images de réels supérieurs ou égaux à 3.

	x	3	3,5	4	5	6
Ì	f(x)	2	1,875	3/2	0	-5/2



4. a) Graphiquement, lire les coordonnées des points d'intersection de \mathscr{P} et des axes du repère. Graphiquement, on lit que \mathscr{P} coupe l'axe des abscisses aux points de coordonnées (1,0) et (5,0) et qu'elle coupe l'axe des ordonnées au point de coordonnées $(0;-\frac{5}{2})$.

b) Montrer que pour tout réel x,

$$f(x) = -\frac{1}{2}(x-1)(x-5).$$

En déduire, algébriquement, les coordonnées des points d'intersection de ${\mathscr P}$ avec l'axe des abscisses.

D'une part,

$$-\frac{1}{2}(x-1)(x-5) = -\frac{1}{2}(x^2 - 6x + 5)$$
$$= -\frac{1}{2}x^2 + 3x - \frac{5}{2}$$

D'autre part,

$$f(x) = -\frac{1}{2}(x-3)^2 + 2$$

$$= -\frac{1}{2}(x^2 - 6x + 9) + 2$$

$$= -\frac{1}{2}x^2 + 3x - \frac{9}{2} + 2$$

$$= -\frac{1}{2}x^2 + 3x - \frac{5}{2}$$

On conclut donc que pour tout réel x, $f(x) = -\frac{1}{2}(x-1)(x-5)$.

Les abscisses des points d'intersection de \mathscr{P} avec l'axe des abscisses sont les solutions de l'équation f(x) = 0. (antécédents de 0 par f)

$$f(x) = 0 \Longleftrightarrow -\frac{1}{2}(x-1)(x-5) = 0$$
$$\iff (x-1)(x-5) = 0$$
$$\iff x-1 = 0 \text{ ou } x-5 = 0$$
$$\iff x = 1 \text{ ou } x = 5$$

Les solutions de l'équation f(x) = 0 sont 1 et 5 donc \mathscr{P} coupe bien l'axe des abscisses aux points de coordonnées (1;0) et (5;0).

c) Déterminer algébriquement les coordonnées du point d'intersection de ${\mathscr P}$ avec l'axe des ordonnées.

2

Il suffit de calculer
$$f(0) = -\frac{1}{2}(0-3)^2 + 2 = -\frac{9}{2} + 2 = -\frac{5}{2}$$
.
 \mathscr{P} coupe l'axe des ordonnées au point de coordonnées $(0; -\frac{5}{2})$.

Exercice 2:

Un artisan fabrique entre 0 et 60 vases par jour et estime que le coût de production de x vases est modélisé par la fonction C définie sur $[0; +\infty[$ par $C(x) = x^2 - 10x + 500.$

On note R(x) la recette, en euros, correspondant à la vente de x vases fabriqués.

Un vase est vendu $50 \in$.

- 1. Calculer le coût et la recette réalisée lorsque l'artisan vend 20 vases. Quel est alors son bénéfice? $C(20) = 20^2 10 \times 20 + 500 = 400 200 + 500 = 700$. Pour 20 vases vendus, le coût est 700 euros. Chaque vase étant vendu 50 euros, la recette est alors $R(20) = 50 \times 20 = 1\,000$ euros et le bénéfice est alors $1\,000 700 = 300$ euros.
- 2. Exprimer R(x) en fonction de x. Pour $x \in [0; +\infty[, R(x) = 50x]$.
- 3. Vérifier que le bénéfice, en euros, réalisé par l'artisan est donné par la fonction B dont l'expression est $B(x) = -x^2 + 60x 500$.

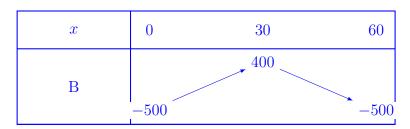
$$B(x) = R(x) - C(x) = 50x - (x^2 - 10x + 500) = -x^2 + 60x - 500.$$

4. a) Développer l'expression $-(x-30)^2 + 400$.

Soit
$$x \in [0; +\infty[$$
,
 $-(x-30)^2 + 400 = -(x^2 - 60x + 900) + 400 = -x^2 + 60x - 500 = B(x)$.

b) En déduire le nombre de vases à vendre pour réaliser un bénéfice maximal. Donner ce bénéfice maximal.

 $B(x) = -(x-30)^2 + 400$ est la forme canonique de la fonction B. On a a = -1, $\alpha = 30$ et $\beta = 400$. On en déduit le tableau de variations suivant : (sur l'intervalle [0;60])



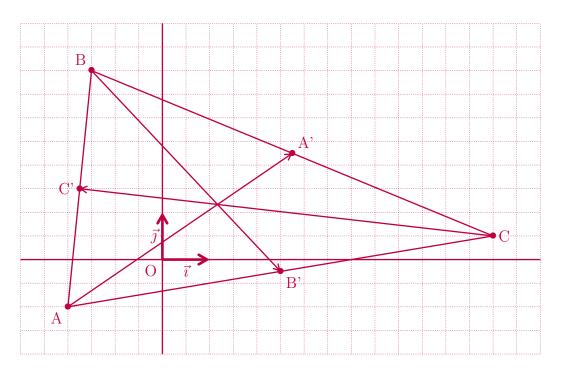
On en déduit que le maximum de B sur [0;60] est B(30)=400.

Le bénéfice est donc maximal pour 30 vases vendus et ce bénéfice maximal est 400 euros.

Exercice 3:

Le plan est muni d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$ et on considère les points A(-2; -1), $B(-\frac{3}{2}, 4)$ et $C(7; \frac{1}{2})$.

1. Faire une figure qui sera complétée au fur et à mesure.



2. Soient A', B' et C' les milieux respectifs des segments [BC], [AC] et [AB]. Déterminer les coordonnées des vecteurs \overrightarrow{AA} , \overrightarrow{BB} et \overrightarrow{CC} .

A' est le milieu de [BC] donc A' $\left(\frac{-\frac{3}{2}+7}{2}; \frac{4+\frac{1}{2}}{2}\right)$ donc A' $\left(\frac{\frac{11}{2}}{2}; \frac{\frac{9}{2}}{2}\right)$ et donc A' $\left(\frac{11}{4}; \frac{9}{4}\right)$.

B' est le milieu de [AC] donc B' $\left(\frac{-2+7}{2}; \frac{-1+\frac{1}{2}}{2}\right)$ donc B' $\left(\frac{5}{2}; \frac{-\frac{1}{2}}{2}\right)$ et donc B' $\left(\frac{5}{2}; -\frac{1}{4}\right)$.

C' est le milieu de [AB] donc C' $\left(\frac{-2-\frac{3}{2}}{2}; \frac{-1+4}{2}\right)$ donc C' $\left(\frac{-\frac{7}{2}}{2}; \frac{3}{2}\right)$ et donc C' $\left(-\frac{7}{4}; \frac{3}{2}\right)$.

On en déduit que :

- $\overrightarrow{AA'}$ $\left(\frac{11}{4} (-2); \frac{9}{4} (-1)\right)$ donc $\overrightarrow{AA'}$ $\left(\frac{19}{4}; \frac{13}{4}\right)$.
- \overrightarrow{BB} , $\left(\frac{5}{2} \left(-\frac{3}{2}\right); -\frac{1}{4} 4\right)$ donc \overrightarrow{BB} , $\left(4; -\frac{17}{4}\right)$.
- \overrightarrow{CC} , $\left(-\frac{7}{4}-7\right)$; $\frac{3}{2}-\frac{1}{2}$ donc \overrightarrow{CC} , $\left(-\frac{35}{4};1\right)$.
- 3. Calculer les coordonnées du vecteur $\overrightarrow{AA'}$, $+\overrightarrow{BB'}$, $+\overrightarrow{CC'}$.

Quelle interprétation pouvez-vous en faire?

On en déduit que $\overrightarrow{AA'}$ + $\overrightarrow{BB'}$ + $\overrightarrow{CC'}$ $\left(\frac{19}{4} + 4 - \frac{35}{4}; \frac{13}{4} - \frac{17}{4} + 1\right)$ donc $\overrightarrow{AA'}$ + $\overrightarrow{BB'}$ + $\overrightarrow{CC'}$ $\left(\frac{19}{4} + \frac{16}{4} - \frac{35}{4}; \frac{13}{4} - \frac{17}{4} + \frac{4}{4}\right)$. Finalement, on obtient $\overrightarrow{AA'}$ + $\overrightarrow{BB'}$ + $\overrightarrow{CC'}$ (0;0), le vecteur $\overrightarrow{AA'}$ + $\overrightarrow{BB'}$ + $\overrightarrow{CC'}$ est donc nul. Ceci signifie que la translation de vecteur $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}$ ne déplace pas les points!

Si on place des masses égales aux sommets A, B et C, le point de concours obtenu est un point d'équilibre de ce système.

Exercice 4:

On lance deux fois de suite un dé tétraédrique dont les quatre faces sont numérotées de 1 à 4.

On forme ainsi un nombre à deux chiffres. Par exemple, si on obtient 2 au premier lancer et 3 au second, on forme le nombre 23.

- 1. Décrire l'univers Ω associé à cette expérience aléatoire. Donner toutes les issues qui composent Ω . Ω est l'ensemble des nombres à deux chiffres choisis entre 1 et 4. $\Omega = \{11; 12; 13; 14; 21; 22; 23; 24; 31; 32; 33; 34; 41; 42; 43; 44\}.$
- 2. Quelle est la loi de probabilité sur Ω ? Les issues ont toutes la même probabilité puisque les deux chiffres sont choisis au hasard et indépendamment l'un de l'autre. La loi sur Ω est donc équirépartie.
- 3. Soit A l'événement : « le chiffre des dizaines du nombre obtenu est 3 ». Donner toutes les issues qui composent A puis calculer P(A). $A = \{31; 32; 33; 34\}$.

$$A = \{31; 32; 33; 34\}.$$

La loi étant équirépartie, on a

$$P(A) = \frac{\text{nombre d'éléments de A}}{\text{nombre d'éléments de }\Omega} = \frac{4}{16} = \frac{1}{4} = 0.25$$

La probabilité d'obtenir un nombre dont le chiffre des dizaines est 3 est 0,25.

4. Soit B l'événement : « le nombre obtenu contient deux chiffres différents » Décrire l'événement \overline{B} à l'aide d'une phrase puis en donner toutes les issues. Calculer P(B).

 \overline{B} : « le nombre obtenu contient les deux mêmes chiffres » $\overline{B} = \{11; 22; 33; 44\}$ donc

$$P(\overline{B}) = \frac{4}{16} = 0.25$$

Or $P(B) = 1 - P(\overline{B})$ donc P(B) = 1 - 0.25 = 0.75. La probabilité d'obtenir un nombre ayant deux chiffres différents est 0.75.