CH. VIII — SUITES NUMÉRIQUES

I Généralités

Définition Une suite numérique est une liste de nombres réels.

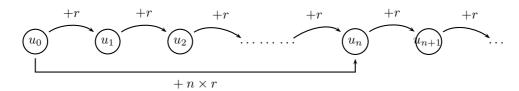
Exemple. — On considère la suite :

terme :	1	2	4	7	11	16	
rang:	0	1	2	3	4	5	
terme initial			terme de $u_2 = 4$ rang 3			$u_5 = 16$	

On se limitera à certains types de suites définies par **récurrence**, c'est-à-dire dont chaque terme se calcule en fonction du précédent :

- les suites arithmétiques où l'on passe d'un terme au suivant en ajoutant un nombre constant;
- les suites géométriques où l'on passe d'un terme au suivant en multipliant par un nombre constant.

II Suites arithmétiques



Définition Une suite (u_n) est dite arithmétique s'il existe un réel r tel que, pour tout n:

$$u_{n+1} = u_n + r.$$

r est appelé la raison de la suite.

Reconnaître une suite arithmétique

On considère la suite des multiples positifs de 7 : 0, 7, 14, 21,

Pour passer d'un terme au terme suivant, on ajoute toujours 7 donc cette suite est arithmétique de raison r = 7. Son terme initial est $u_0 = 0$.

Théorème (Forme explicite d'une suite arithmétique)

Soit (u_n) une suite arithmétique de raison r. Alors, pour tout $n \in \mathbb{N}$ on a :

$$u_n = u_0 + nr$$

De même :

$$u_n = u_1 + (n-1)r$$

Utiliser la forme explicite d'une suite arithmétique

La population d'une ville était de 85 000 habitants en 2000; mais elle diminue de 600 habitants par an.

À ce rythme, combien y aura-t-il d'habitants en 2050?

Réponse. — On note u_n le nombre d'habitants de la ville en l'an 2000 + n.

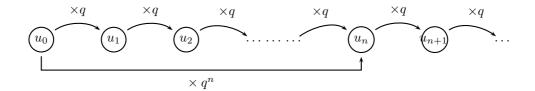
Le terme initial est $u_0 = 85000$.

Pour passer d'un terme au suivant, on soustrait 600 donc la suite (u_n) est arithmétique de raison r = -600 et de terme initial $u_0 = 85000$.

D'après le théorème, la forme explicite est : $u_n = u_0 + n \times r = 85000 + n \times (-600) = 85000 - 600 n$.

Le nombre d'habitants en 2050 est donc : $u_{50} = 85000 - 600 \times 50 = 85000 - 30000 = 55000$ habitants.

III Suites géométriques



Définition Une suite (u_n) est dite **géométrique** s'il existe un réel q tel que, pour tout n:

$$u_{n+1} = q \, u_n.$$

q est appelé la raison de la suite.

Reconnaître une suite géométrique

Une population de bactéries double toutes les heures. On observe un échantillon contenant initialement 100 000 bactéries

On pose $u_0 = 100\,000$ et on note u_n le nombre de bactéries n heures après le début de l'observation. Montrer que la suite (u_n) est géométrique. Préciser sa raison et son terme initial.

Réponse. — Pour passer d'un terme au suivant, on multiplie toujours par 2, donc la suite (u_n) est géométrique de raison q = 2, et de terme initial $u_0 = 100\,000$.

THÉORÈME (Forme explicite d'une suite géométrique)

Soit (u_n) une suite géométrique, de terme initial u_0 et de raison q. Alors, pour tout $n \in \mathbb{N}$ on a :

$$u_n = u_0 \times q^n$$

De même:

$$u_n = u_1 \times q^{n-1}$$

Utiliser la forme explicite d'une suite géométrique

La population d'une ville, qui était de $85\,000$ habitants en 2000, baisse de $5\,\%$ par an depuis cette date.

1. Combien y avait-il d'habitants en 2001? En 2002?

Réponse. — En 2001 :
$$85000 - \frac{5}{100} \times 85000 = 85000 \times (1 - \frac{5}{100}) = 85000 \times \underbrace{0,95}_{CM} = 80750$$
 habitants.
En 2002 : $80750 \times [0,95] = 76712, 5 \simeq 76713$ habitants.

En 2002 : $80750 \times \underbrace{0,95}_{CM} = 76712, 5 \simeq 76713$ habitants.

2. On note p_0 la population en 2000 et p_n la population de l'année (2000 + n). Montrer que la suite (p_n) est géométrique. Préciser son terme initial et sa raison.

Réponse. — Pour passer d'un terme au suivant, on multiplie toujours par 0,95 (c'est-à-dire qu'on diminue de 5 %); donc la suite (p_n) est géométrique de raison q = 0,95, et de terme initial $p_0 = 85\,000$.

3. À ce rythme, combien y aura-t-il d'habitants en 2050?

Réponse. — D'après le théorème, la forme explicite est : $p_n = p_0 \times q^n = 85000 \times 0,95^n$. Le nombre d'habitants en 2050 est donc : $p_{50} = 85000 \times 0,95^{50} \simeq 6540,3 \simeq 6540$ habitants.