Activité 1 : Association humanitaire

Une association humanitaire recueille des chemises et les classe en deux catégories : hiver et été.
Pourcentage de chemises classées hiver : H=35%.
Pourcentage de chemises classées été : E=65%.
Dans chaque catégorie, un tri est réalisé. 40% des chemises classées H sont en mauvais état alors que 20% des chemises classées E sont en mauvais état.

➢ Quelle est la probabilité pour qu’une chemise prise au hasard soit en mauvais état ?

Activité 2 : Ascenseurs

Une salariée pour rejoindre son bureau peut emprunter deux ascenseurs A et B qui ont une probabilité respective de tomber en panne de 2% et 1%.

➢ Quelle est la probabilité que les deux ascenseurs soient en panne en même temps ?
Activité 3 : Etude d’une forêt.

Une forêt est composée de chênes et de hêtres. On décide de faire l’abattage des arbres qui sont envahis par des chenilles afin de limiter leur prolifération. On veut présenter un tableau récapitulatif pour faire l’analyse des coupes à faire dans la forêt et prévoir si un reboisage est nécessaire.

Caractéristiques de la forêt : 2000 arbres dont 700 sont des chênes. Parmi les chênes, trois sur cinq ne sont pas envahis par les chenilles. Parmi les hêtres, 15% sont envahis par les chenilles.

1/a- Quel est le pourcentage de chênes par rapport à l’ensemble des arbres de la forêt ? …….

b- Quel est le pourcentage de chênes avec ou sans chenilles par rapport à l’ensemble des arbres constituant la forêt ? …….

2/a- En déduire le pourcentage de hêtres constituant la forêt.

b- Quel est le pourcentage de hêtres qui sont sains ou envahis par les chenilles par rapport à l’ensemble des arbres de la forêt ? …….

3/On note C un chêne et H un hêtre. Lorsque l’arbre est « sans chenille » on le désigne par S, et son contraire par \bar{S}.

a- Quelle est la signification de l’évènement \bar{S} ? …….

b- Compléter le schéma suivant

\[\begin{align*}
C & \quad 0,60 \quad S \\
0,35 & \quad \bar{S} \\
H & \quad 0,15 \quad S \\
\end{align*} \]

Pourcentage de chênes sains : $0,35 \times 0,6 = 0,21$.

4/a- Compléter alors le tableau suivant en présentant les résultats en pourcentage.

b- Indiquer le nombre d’arbres qui vont être abattus suite à ce dénombrement et la proportion en pourcentage de chaque espèce.

\[
\begin{array}{|c|c|c|}
\hline
Arbre & Arbre envahi par les chenilles & Total \\
\hline
\text{Chêne} & & \\
\hline
\text{Hêtre} & & \\
\hline
\end{array}
\]

c- Une forêt se reconstitue d’elle-même si on ne fait pas une coupe d’arbres supérieure à 25% d’une année sur l’autre. Sera-t-il utile de prévoir la plantation d’arbres suite à l’abattage ? …….
Activité 4 : Fleurs.

Un fleuriste fait la promotion de bouquets de tulipes et de roses de couleurs différentes. Les fleurs dont il dispose sont indiquées dans le tableau suivant.

On prend une fleur au hasard : quelle est la probabilité d’obtenir une fleur jaune ?

On note les événements R « la fleur est une rose » ; T « la fleur est une tulipe »
B « la fleur est blanche » ; O « la fleur est orange » ; J « la fleur est jaune »

1/ Pourquoi peut-on dire que l’on est dans une situation d’équiprobabilité ?

2/a Calculer la probabilité de tirer au hasard une rose et une tulipe.

b Montrer que la probabilité d’avoir une rose jaune est de 0,24 arrondie à 0,01.

3/a Compléter l’arbre ci-contre décrivant l’univers de cette situation

b Que représentent les nombres 0,474 et 0,5 figurant sur l’arbre ?

c A quoi correspond le chemin indiqué en gras sur l’arbre ?

d L’événement $R \cap J$ est réalisé si on a obtenu une rose (la fleur) de couleur jaune. Calculer $p(R \cap J)$ sachant que $p(R \cap J) = p(R) \times p(J)$.

e A quoi correspond le chemin en pointillé sur l’arbre ?

f Calculer $p(T \cap J)$ arrondie à 0,01.

4/a En remarquant que la probabilité d’obtenir une fleur jaune correspond à la réunion des deux chemins des deux questions 3/d et 3/f, calculer alors cette probabilité.

b Déterminer alors les probabilités lors d’un tirage au hasard d’obtenir une fleur orange, une fleur blanche.
Cours

- **Expérience aléatoire**: Expérience dont on ne peut pas prévoir le résultat (un dé parfaitement équilibré). Tout résultat possible est une éventualité.

Quelles sont les éventualités d'un dé à 6 faces ?

- L'ensemble des éventualités est l'univers U.

 $$U = \{\ldots; \ldots; \ldots; \ldots; \ldots\}$$

S'il n'y a qu'une seule éventualité, c'est un événement élémentaire.

- **L'événement contraire** s'écrit avec le même symbole et une barre au dessus.

Une urne contient 6 boules rouges, 2 boules blanches et 2 boules vertes. (Toutes les boules sont indiscernables au toucher).
L'événement élémentaire est R = »la boule tirée n'est pas rouge ».

Quel est l'événement contraire ?

$$p(R) + p(\overline{R}) = 1$$

- Si deux événements E_1 et E_2 ne peuvent se réaliser en même temps, ils sont incompatibles ou disjoints.

 On note alors :

 $$E_1 \cap E_2 = \emptyset$$

 « Ensemble vide »

 « Inter »

- **Equiprobabilité**: Tous les événements élémentaires ont la même probabilité de se produire.

 $$p(A) = \frac{\text{Nbres de cas favorables à } A}{\text{Nbres de cas possibles}} = \frac{\text{Nbres d'éléments } A}{\text{Nbres d'éléments } U}$$

 $$[0 \leq p(A) \leq 1]$$

Probabilité de la réunion de deux événements indépendants.

Deux événements sont indépendants si la réalisation de l'un n'a pas d'influence sur la réalisation de l'autre.

$$p(A \cup B) = p(A) + p(B)$$

« Union »

Probabilité de l'intersection de deux événements indépendants.

$$p(C \cap A) = p(C) \times p(A)$$