Correction de l'exercice n°60 p 121

1)a) On a $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$: u_n est la somme de n termes.

Pour mieux comprendre comment est construite la suite (u_n) , voici les trois premiers termes :

$$u_n = \sum_{k=1}^{1} \frac{1}{1^2 + k} = \frac{1}{1^2 + 1} = \frac{1}{2} ,$$

$$u_n = \sum_{k=1}^{2} \frac{2}{2^2 + k} = \frac{2}{2^2 + 1} + \frac{2}{2^2 + 2} = \frac{2}{5} + \frac{2}{6} = \frac{11}{15} ,$$

$$u_n = \sum_{k=1}^{3} \frac{3}{3^2 + k} = \frac{3}{3^2 + 1} + \frac{3}{3^2 + 2} + \frac{3}{3^2 + 3} = \frac{3}{10} + \frac{3}{11} + \frac{3}{12} = \frac{181}{220} .$$

1)b) Soit k un entier fixé; si n est un entier supérieur ou égal à k, alors $\frac{n}{n^2 + k} = \frac{1}{n + k \times \frac{1}{n}}$. Par produit on a $\lim_{n \to +\infty} \left(k \times \frac{1}{n}\right) = k \times 0 = 0$; d'autre part $\lim_{n \to +\infty} n = +\infty$ donc par somme $\lim_{n \to +\infty} \left(n + k \times \frac{1}{n}\right) = +\infty$. Finalement par quotient, $\lim_{n \to +\infty} \frac{n}{n^2 + k} = 0$.

 \hookrightarrow Chaque terme de la somme définissant u_n a donc une limite nulle.

Attention, on ne peut pas en conclure que u_n converge vers $0 + \cdots + 0 = 0$, car le nombre de terme de la somme $\sum_{k=1}^{n} \frac{n}{n^2 + k}$ dépend de n (il est égal à n, comme on l'a vu au 1.a.).

- **2)a)** Les fractions $\frac{n}{n^2+1}$, $\frac{n}{n^2+1}$, \cdots , $\frac{n}{n^2+n}$ ont toutes le même numérateur et des dénominateurs qui s'échelonnent entre n^2+1 et n^2+n . Ainsi la plus petite des fractions précédentes est $\frac{n}{n^2+n}$ et la plus grande est $\frac{n}{n^2+1}$.
- **2)b)** D'après la question précédente, u_n est une somme de n termes tous inférieurs à $\frac{n}{n^2+1}$ et tous supérieurs à $\frac{n}{n^2+n}$. On en déduit que $n \times \frac{n}{n^2+n} \leqslant u_n \leqslant n \times \frac{n}{n^2+1}$, d'où $\frac{n^2}{n^2+n} \leqslant u_n \leqslant \frac{n^2}{n^2+1}$.
- **2)c)** Si n > 0, on a $\frac{n^2}{n^2 + n} = \frac{1}{1 + \frac{1}{n}}$ et $\frac{n^2}{n^2 + 1} = \frac{1}{1 + \frac{1}{n^2}}$. Or $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} \frac{1}{n^2} = 0$ donc par somme et quotient, $\lim_{n \to +\infty} \frac{n^2}{n^2 + n} = \frac{1}{1 + 0} = 1$ et $\lim_{n \to +\infty} \frac{n^2}{n^2 + 1} = \frac{1}{1 + 0} = 1$. La suite (u_n) est donc encadrée par deux suites qui convergent vers 1: le théorème des gendarmes prouve donc que (u_n) converge aussi vers 1.