Maths complémentaires : correction des exercices sur les limites de suites

Ι

a)
$$\lim_{n \to +\infty} (1 - 2n) = -\infty$$
 et $(n^2 + 3) = +\infty$ donc, par produit:

$$\lim_{n \to +\infty} (1 - 2n) \left(n^2 + 3 \right) = -\infty$$

b)
$$\lim_{n \to +\infty} \left(\frac{1}{n}\right) = 0$$
 donc $\lim_{n \to +\infty} \left(2 + \frac{1}{n}\right) = 2$. D'où:

$$\lim_{n \to +\infty} \left(2 + \frac{1}{n} \right)^2 = 4$$

$$\lim_{n \to +\infty} (1 - 2n^2) = -\infty$$
donc:

$$\lim_{n \to +\infty} \left(\frac{1}{1 - 2n^2} \right) = 0$$

c) Pour calculer $\lim_{n\to+\infty} (-2n^3 + 3n^2 - 5n + 3)$, on a une forme indéterminée.

$$(-2n^3 + 3n^2 - 5n + 3 = n^3 \left(-2 + \frac{3}{n} - \frac{5}{n^2} + \frac{3}{n^3} \right).$$

$$\lim_{n \to +\infty} n^3 = +\infty \text{ et } \lim_{n \to +\infty} \left(-2 + \frac{3}{n} - \frac{5}{n^2} + \frac{3}{n^3} \right) = -2.$$
Par produit:
$$\lim_{n \to +\infty} \left(-2n^3 + 3n^2 - 5n + 3 \right) = -\infty$$

Par produit:
$$\lim_{n \to +\infty} \left(-2n^3 + 3n^2 - 5n + 3 \right) = -\infty$$

d) Calcul de
$$\lim_{n \to +\infty} \left(\frac{n^2 - 4n + 3}{4n^2 + 5} \right)$$
.
On a une forme indéterminée.
$$\frac{n^2 - 4n + 3}{4n^2 + 5} = \frac{\cancel{N}^2 \left(1 - \frac{4}{n} + \frac{3}{n^2} \right)}{\cancel{N}^2 \left(4 + \frac{5}{n^2} \right)} = \frac{1 - \frac{4}{n} + \frac{3}{n^2}}{4 + \frac{5}{n^2}}.$$

$$\bullet \lim_{n \to +\infty} \left(1 - \frac{4}{n} + \frac{3}{n^2} \right) = 1$$

$$\bullet \quad \lim_{n \to +\infty} \left(4 + \frac{5}{n^2} \right) = 4$$

Par quotient:
$$\lim_{n \to +\infty} \left(\frac{n^2 - 4n + 3}{4n^2 + 5} \right) = \frac{1}{4}.$$

e) Calcul de
$$\lim_{n\to+\infty} \left(\frac{-3n+4}{n^2+1}\right)$$
: on a une forme indéterminée.

$$\frac{-3n+4}{n^2+1} = \frac{n\left(-3+\frac{4}{n}\right)}{n^2\left(1+\frac{1}{n^2}\right)} = \frac{-3+\frac{4}{n}}{n\left(1+\frac{1}{n^2}\right)}$$
 après simplification par n .

$$\bullet \lim_{n \to +\infty} \left(1 + \frac{1}{n^2} \right) = 1$$

•
$$\lim_{n \to +\infty} n = +\infty$$

$$\bullet \quad \lim_{n \to +\infty} \left(1 + \frac{1}{n^2} \right) = 1$$

Par produit et quotient :
$$\lim_{n \to +\infty} \left(\frac{-3n+4}{n^2+1} \right) = 0$$

f)
$$3 > 0$$
 donc $\lim_{n \to +\infty} 3^n = +\infty$ d'où : $\lim_{n \to +\infty} (1 - 3^n) = -\infty$

g)
$$\sqrt{2} > 1$$
 donc $\lim_{n \to +\infty} \sqrt{2}^n = +\infty$ d'où $\lim_{n \to +\infty} 5\sqrt{2}^n = +\infty$

h)
$$0 < 0, 7 < 1 \text{ donc } \lim_{n \to +\infty} 0, 7^n = 0 \text{ donc } : \boxed{\lim_{n \to +\infty} 50 \times 0, 7^n = 0}$$

i) On a une forme indéterminée, mais on remarque que
$$\left(\frac{2^n}{5^n}\right) = \left(\frac{2}{5}\right)^n$$
.

$$0 < \frac{2}{5} < 1 \text{ donc } \lim_{n \to +\infty} \left(\frac{2}{5}\right)^n = 0.$$

Finalement:
$$\lim_{n \to +\infty} \left(\frac{2^n}{5^n} \right) = 0.$$

II

En 2015, on estime à 3 200 le nombre de tigres sauvages dans le monde.

On peut craindre que ce nombre continue dans les années à venir à diminuer de 3 % par an.

Pour tout entier naturel n, on note T_n le nombre de tigres sauvages en l'an 2015 + n selon ce modèle.

1. Le coefficient multiplicateur associé à une baisse de 3 % est
$$1 - \frac{3}{100} = 0,97$$
.

Pour tout *n*,
$$T_{n+1} = 0.97 T_n$$
.

2. La suite
$$(T_n)$$
 est géométrique de raison $\boxed{q=0,97}$ et de premier terme $T_0=3\,200$.

On en déduit que, pour tout
$$n$$
, $T_n = T_0 q^n = 1200 \times 0.97^n$.

3.
$$0 < 0.07 < 1 \text{ donc } \lim_{n \to +\infty} 0.97^n = 0 \text{ d'où } \lim_{n \to +\infty} T_n = 0$$
.

Ш

En 2018, on évalue la population d'une ville à 10 000 habitants. Chaque année, 10 % de la population quitte la ville, et 500 personnes viennent s'y installer.

On modélise la population de cette ville par une suite u définie sur \mathbb{N} , où u_n est égal au nombre d'habitants en 2018 + n.

1. $u_0 = 10000$.

Le coefficient multiplicateur associé à une baisse de 10 % est 0,9 car $-10\% = 1 - \frac{10}{100} = 0,9$.

$$u_1 = 0,9u_0 + 500$$

- 2. De même, pour tout n, $u_{n+1} = 0.9u_n + 500$
- 3. $u_0 = 10\,000$; $u_1 = 9\,500$ et $u_2 = 90\,50$. $u_1 u_0 = -500$ et $u_2 u_1 = -4\,50$.

 La différence de deux termes consécutifs n'est pas constante : la suite (u_n) n'est pas arithmétique.

• $\frac{u_1}{u_0} = 0.95$ et $\frac{u_2}{u_1} \approx 0.953$.

Les quotients de termes consécutifs ne sont pas égaux : a suite (u_n) n'est pas géométrique.

- Il est donc difficile de calculer la population en 2040, c'est-à-dire u_{22} .
- 4. Soit (v_n) la suite définie sur \mathbb{N} par $v_n = u_n 5000$.
 - (a) Pour tout n, $v_{n+1} = u_{n+1} 5000$
 - $= 0.9u_n + 500 5000$
 - $= 0,9u_n 4500$
 - $=0,9(u_n-500)$
 - $= 0,9 \nu_n$.

Par conséquent, pour tout $n: v_{n+1} = 0.9v_n$.

 (v_n) est géométrique, de raison q = 0.9 et de premier terme $v_0 = u_0 - 5000 = 5000$.

- (b) Alors, pour tout $n : v_n = v_0 q^n = \boxed{5000 \times 0.9^n}$
 - On en déduit : $n = v_n + 5000 = 5000 + 5000 \times 0,9^n = \boxed{5000 (1 + 0,9^n)}$
- (c) La population en 2040 est $u_{22} = 5000 \times (1 + 0.9^{22}) \approx 5492$.
- 5. $0 < 0.9 < 1 \text{ donc } \lim_{n \to +\infty} 0.9^n = 0 \text{ d'où } \lim_{n \to +\infty} u_n = 5000$

Si le modèle perdure, la population va tendre vers 5 000 habitants.