TS : correction du devoir sur feuille nº 1

I

a) Soit l'équation $3x^2 - 5x - 1 = 0$ Le discriminant est $\Delta = 37 > 0$. L'équation a deux solutions:

$$\mathscr{S} = \left\{ \frac{5 - \sqrt{37}}{6} \; ; \; \frac{5 + \sqrt{37}}{6} \right\}$$

b) Soit l'équation $x^4 + 4x^2 - 21 = 0$.

On pose
$$X = x^2$$
 donc $x^4 + 4x^2 - 21 = 0 \Leftrightarrow$

$$\begin{cases} X = x^2 \\ X^2 + 4X - 21 = 0 \end{cases}$$

Le discriminant de cette équation d'inconnue Xest $\Delta = 100 > 0$.

Elle a deux solutions réelles :
$$X_1 = \frac{-4-10}{2} = -7$$
 et $X_2 = \frac{-4+10}{2} = 3$.

Or $X = x^2$, donc on résout les équations $x^2 = X_1$ et $x^2 = X_2$.

 $x^2 = X_1 = -7$ n'as pas de solution; $x^2 = X_2 = 3$ a deux solutions, $-\sqrt{3}$ et $\sqrt{3}$.

L'ensemble des solutions est donc

$$\mathscr{S} = \left\{ -\sqrt{3} \; ; \; \sqrt{3} \right\}$$

II

Soit l'inéquation $\frac{3x+5}{x+2} \ge \frac{2x+1}{x-1}$. 1 et -2 sont des valeurs **interdites** (valeurs qui annulent les dénominateurs). L'ensemble de définition est donc $\mathcal{D} = \mathbb{R} \setminus \{-2; 1\}$.

On suppose que $x \in \mathcal{D}$.

On suppose que
$$x \in \mathcal{D}$$
.
Alors: $\frac{3x+5}{x+2} \ge \frac{2x+1}{x-1} \Leftrightarrow \frac{3x+5}{x+2} - \frac{2x+1}{x-1} \ge 0$
 $\Leftrightarrow \frac{(3x+5)(x-1) - (2x+1)(x+2)}{(x+2)(x-1)} \ge 0$
 $\Leftrightarrow \frac{(3x^2 - 3x + 5x - 5) - (2x^2 - x + 2x + 2)}{(x+2)(x-1)}$
 $\Leftrightarrow \frac{x^2 - 3x - 7}{(x+2)(x-1)}$.

Le numérateur est un trinôme du second degré; pour trouver son signe, on cherche ses racines.

$$\Delta = 37 > 0$$
; il y a deux racines $x_1 = \frac{3 - \sqrt{37}}{2}$ et $x_2 = \frac{3 + \sqrt{37}}{2}$.

Le dénominateur s'annule pour $x_3 = -2$ ou $x_4 = 1$. On renseigne alors un tableau de signes, sans oublier les double-barres sous les valeurs interdites :

x	$-\infty$ -	$\frac{3}{2}$	$-\sqrt{3}$	<u>7</u>	3	$+\sqrt{3}$	7	+∞
$x^2 - 3x - 7$	+	+	0	_	_	0	+	
(x+2)(x-1)	+	_	ф	+		_	0	+
$\frac{x^2-3x-7}{(x+2)(x-1)}$	+	_	ф	+	_	ф	+	

On cherche dans le tableau les valeurs de x pour lesquelles le quotient est positif. L'ensemble des solutions est:

$$\mathscr{S} =]-\infty; 2[\cup \left[\frac{3-\sqrt{37}}{2}; 1\right] \cup \left[\frac{3-\sqrt{37}}{2}; +\infty\right]$$

Ш

Soit f la fonction définie sur $\mathcal{D}_f = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ par

$$f(x) = \frac{-2x^2 + 6x - 7}{2x - 1}.$$

1. (a)
$$f = \frac{u}{v}$$
 avec $u(x) = -2x^2 + 6x - 7$ et $v(x) = 2x - 1$.
 $f' = \frac{u'v - uv'}{v^2}$ avec $u'(x) = -4x + 6$ et $v'(x) = 2$.

Alors:

Afors:

$$f'(x) = \frac{(-4x+6)(x-1)-2(-2x^2+6x-7)}{(2x-1)^2}$$

$$= \frac{(-4x^2+4x+8)}{(2x-1)^2} = \boxed{-4\frac{(x^2-x-2)}{(2x-1)^2}}. \text{ (en)}$$

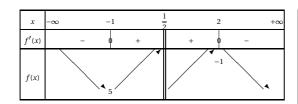
factorisant par -4)

 $x^2 - x - 2$ a une racine évidente, -1, donc se factorise par (x+1):

$$x^{2} - x - 2 = (x+1)(x-2).$$
On en déduit que
$$f'(x) = \frac{-4(x-2)(x+1)}{(2x-1)^{2}}$$

(b) On renseigne un tableau de signes; le numérateur est un trinôme du second degré dont on connaît les racines (il est du signe du coefficient de x^2 à l'extérieur de l'intervalle formé par les racines).

Le dénominateur est le carré d'un réel, donc toujours positif; f''(x) est donc du signe du numérateur.



2. L'équation rédu<u>ite de la tangente à \mathscr{C}_f au point</u> d'abscisse a est y = f'(a)(x - a) + f(a)

Pour
$$a = 0$$
: $y = f'(0)x + f(0)$. Or $f(0) = 7$ et $f'(0) = 8$.

L'équation de la tangente à \mathscr{C}_f en 0 est : y = 8x + 7

3. Il faut résoudre l'équation f'(x) = 3.

$$f'(x) = 3 \Leftrightarrow \frac{-4x^2 + 4x + 8}{(2x - 1)^2} = 3 \Leftrightarrow -4x^2 + 4x + 8 = 3(2x - 1)^2 \Leftrightarrow -4x^2 + 4x + 8 = 12x^2 - 12x + 3$$
$$\Leftrightarrow -16x^2 + 16x + 5 = 0.$$

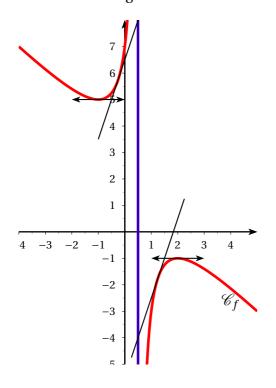
$$\Delta = 16^2 + 4 \times 16 \times 5 = 16(16 + 20) = 16 \times 36 = 4^2 \times 6^2 = (4 \times 6)^2 = 24^2 > 0.$$

Il y a deux solutions qui sont
$$\frac{-16-24}{-32} = \frac{5}{4}$$
 et $\frac{-16+24}{-32} = -\frac{1}{4}$.

Ca courbe a deux tangentes de coefficient directeur égal à 3 aux points d'abscisses $-\frac{1}{4}$ et $\frac{5}{4}$

4. Courbe:

Penser à tracer les tangentes horizontales.



IV

Soit f la fonction définie sur $\mathcal{D}_f = \mathbb{R} \setminus \{1\}$ par

$$f(x) = \frac{x^3 - 2x^2}{(x - 1)^2}.$$

1. (a) Pour tout $x \in \mathcal{D}$, $f(x) = \frac{x(x^2 - 2x)}{(x-1)^2}$ $= \frac{x(x^2 - 2x + 1 - 1)}{(x - 1)^2} = \frac{x(x - 1)^2}{(x - 1)^2} - \frac{x}{(x - 1)^2}$ $= x - \frac{x}{(x - 1)^2}, \text{ donc, pour tout } x \in \mathcal{D},$

$$f(x) = x - \frac{x}{(x-1)^2}$$

(b) On étudie le signe de la différence f(x) - x. D'après la question A., $f(x) - x = -\frac{x}{(x-1)^2}$ qui est du signe opposé à celui de x, donc positif pour x négatif et négatif pour x positif.

On en déduit que $\mathscr C$ est au-dessus de Δ pour $x \in]-$; 0] et en dessous sur [0; 1[et sur]1; ∞ [.

2. f est dérivable sur $\mathcal D$ comme quotient de onc-

tions dérivables.

$$f = \frac{u}{v} \text{ avec } u(x) = x^3 - 2x^2 \text{ et } v(x) = (x-1)^2$$

$$= x^2 - 2x + 1.$$

$$= x^{2} - 2x + 1.$$
Alors $f' = \frac{u'v - uv'}{v^{2}}$ avec $u'(x) = 3x^{2} - 4x$ et $v'(x) = 2x - 2 = 2(x - 1).$

Pour tout $x \in \mathcal{D}$

Four tout
$$x \in \mathcal{D}$$
:

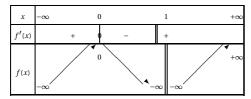
$$f'(x) = \frac{(3x^2 - 4x)(x - 1)^2 - 2(x - 1)(x^3 - 2x^2)}{(x - 1)^4} = \frac{(x - 1)[(3x^2 - 4x)(x - 1) - 2(x^3 - 2x^2)]}{(x - 1)^4} = \frac{(x - 1)[x^3 - 3x^2 + 4x]}{(x - 1)^4} = \frac{x(x - 1)(x^2 - 3x + 4)}{(x - 1)^4}$$

(a) Le dénominateur est positif donc f'(x) est du signe du numérateur.

 $x^2 - 3x + 4$ a pour discriminant $\Delta = -7 < 0$ donc $x^2 - 3x + 4$ est du signe du coefficient de x^2 , 1, donc positif.

On en déduit que f'(x) est du signe de x(x-1) qui s'annule en 0 et en 1 et qui est positif à l'extérieur de l'intervalle formé par ces nombres.

(b) Tableau de variation:



Remarque: l'étude des limites aux bornes de l'ensemble de définition se fera dans un prochain chapitre.

3. (a) Intersection avec l'axe (Ox): on résout l'équation f(x) = 0. $f(x) = 0 \Leftrightarrow x^3 - 2x^2 = 0 \Leftrightarrow x^2(x-2) = 0$ qui a pour solutions 0 et 2. \mathscr{C} coupe l'axe des

abscisses en x = 0 et x = 2. Intersection avec l'axe (Oy): on calcule

(b) Δ a pour coefficient directeur 1, donc on résout l'équation f'(x) = 1.

f(0) = 0. \mathscr{C} coupe (Oy) en O.

Pour
$$x \neq 1$$
, $f'(x) = 1$

$$\Leftrightarrow \frac{x(x-1)(x^2 - 3x + 4)}{(x-1)^4} = 1$$

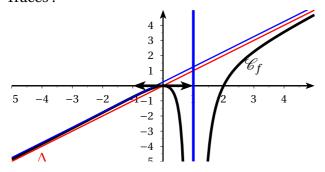
$$\Leftrightarrow x(x-1)(x^2 - 3x + 4) = (x-1)^4$$

$$\Leftrightarrow (x-1)[x(x^2 - 3x + 4) - (x-1)^3] = 0$$

$$x^3 - 3x^2 + 4x - (x^3 - 3x^2 + 3x - 1) = 0 \Leftrightarrow x + 1 = 0 \Leftrightarrow \boxed{x = -1}.$$

 \mathscr{C} a une tangente parallèle à Δ en x = -1.

4. Tracés:



V

On considère la suite (u_n) définie par

$$\left\{ \begin{array}{l} u_0=-3\\ u_{n+1}=5-4u_n \end{array} \right.$$

Soit P_n la proposition :« $u_n = (-4)^{n+1} + 1$ ». Effectuons une démonstration par récurrence.

- Initialisation : Pour n = 0, $(-4)^{0+1} + 1 = (-4)^1 + 1 = -4 + 1 = -3 = u_0$, donc la propriété es vraie pour n = 0.
- **Hérédité** : on suppose la propriété vraie pour un rang n quelconque, donc $u_n = (-4)^{n+1} + 1$.

Alors:
$$u_{n+1} = 5 - 4u_n = 5 - 4 \times ((-4)^{n+1} + 1) + 1 = 5 + (-4)^{n+2} - 4 = (-4)^{n+2} + 1.$$

La propriété est vraie au rang n+1, donzelle est héréditaire.

Conclusion: D'après l'axiome de récurrence, P_n est vraie our tout n, donc, pour tout $n \in \mathbb{N}$, $u_n = (-4)^{n+1} + 1$.

VI

Soit la suite (u_n) définie par

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{u_n + 1}{u_n + 2} \end{cases}.$$

Montrer que, pour tout $n \in \mathbb{N}$, $0 < u_n < 1$. Montrons d'abord par récurrence que, pour tout n, $u_n \ge 0$.

- Initialisation : $u_0 = \frac{1}{2}$ donc c'est vrai pour n = 0.
- **Hérédité** : on suppose $u_n > 0$ pour un entier n. Alors $u_{n+1} = \frac{u_n + 1}{u_n + 2} > 0$ donc c'est vrai au rang n + 1

On en déduit que $u_n > 0$ pour tout n.

Montrons maintenant par récurrence que, pour tout n, $u_n < 1$.

- Initialisation: $u_0 = \frac{1}{2} < 1$ donc c'est vrai pour n = 0.
- **Hérédité**: on suppose $u_n < 1$ pour un entier n quelconque.

$$u_{n+1} - 1 = \frac{u_n + 1}{u_n + 2} - 1 = \frac{u_n + 1 - u_n - 2}{u_n + 2} = \frac{-1}{u_n + 2} < 0$$

puisque $u_n > 0$. on en déduit que $u_{n+1} - 1 < 0$ donc $u_{n+1} < 1$.

La propriété est héréditaire.

D'après l'axiome de récurrence, la propriété est vraie pour tout n.

On a donc montré que, pour tout n, $0 < u_n < 1$.