I

Soit la suite (u_n) définie par $u_n = \sum_{k=1}^n (2k-1)$. Montrer que, pour tout $n \ge 1$, $u_n = n^2$.

II Amérique du Nord mai 2013

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{2u_n}.$$

1. On considère l'algorithme suivant :

Variables: n est un entier naturel

u est un réel positif

Initialisation : Demander la valeur de n

Affecter à u la valeur 1

Traitement : Pour i variant de 1 à n :

| Affecter à u la valeur $\sqrt{2u}$

Fin de Pour

Sortie: Afficher u

- (a) Donner une valeur approchée à 10^{-4} près du résultat qu'affiche cet algorithme lorsque l'on choisit n = 3.
- (b) Que permet de calculer cet algorithme?
- (c) Le tableau ci-dessous donne des valeurs approchées obtenues à l'aide de cet algorithme pour certaines valeurs de n.

ſ	n	1	5	10
ſ	Valeur affichée	1,4142	1,9571	1,9986
ſ	n	15	20	
ſ	Valeur affichée	1,9999	1,9999	

Quelles conjectures peut-on émettre concernant la suite (u_n) ?

- 2. (a) Démontrer que, pour tout entier naturel n, $0 < u_n \le 2$.
 - (b) Déterminer le sens de variation de la suite (u_n) .
 - (c) Démontrer que la suite (u_n) est convergente. On ne demande pas la valeur de sa limite.
- 3. On considère la suite (v_n) définie, pour tout entier naturel n, par $v_n = \ln u_n \ln 2$.
 - (a) Démontrer que la suite (v_n) est la suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = -\ln 2$.
 - (b) Déterminer, pour tout entier naturel n, l'expression de v_n en fonction de n, puis de u_n en fonction de n.
 - (c) Déterminer la limite de la suite (u_n) .
 - (d) Recopier l'algorithme ci-dessous et le compléter par les instructions du traitement et de la sortie, de façon à afficher en sortie la plus petite valeur de n telle que $u_n > 1,999$.

Variables: n est un entier naturel

u est un réel

Initialisation : Affecter à n la valeur 0

Affecter à *u* la valeur 1

Traitement:

Sortie:

III Polynésie juin 2013

On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n}$$

- 1. (a) Calculer u_1 et u_2 .
 - (b) Démontrer, par récurrence, que pour tout entier naturel n, $0 < u_n$.
- 2. On admet que pour tout entier naturel n, $u_n < 1$.
 - (a) Démontrer que la suite (u_n) est croissante.
 - (b) Démontrer que la suite (u_n) converge.
- 3. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1-u_n}.$
 - (a) Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - (b) Exprimer pour tout entier naturel n, v_n en fonction de n.
 - (c) En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.
 - (d) Déterminer la limite de la suite (u_n) .

IV Nouvelle Calédonie mars 2012

VRAI ou FAUX?

Pour chacun des énoncés suivants, indiquer si la proposition correspondante est vraie ou fausse et proposer une justification de la réponse choisie.

1. **Énoncé 1 :** Soit $(a_n)_{n \in \mathbb{N}}$ une suite non constante de réels.

Pour tout entier n, on pose $u_n = \sin(a_n)$.

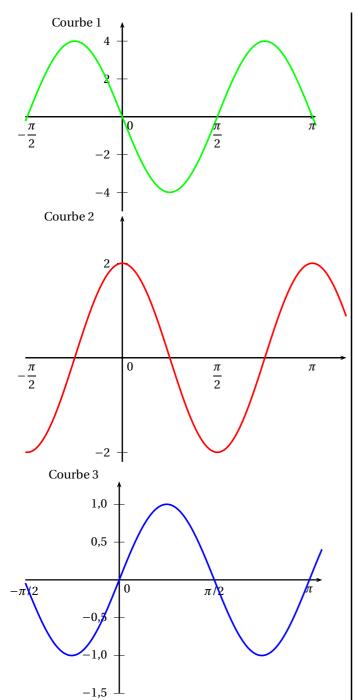
Proposition 1 : « On peut choisir la suite $(a_n)_{n\in\mathbb{N}}$ telle que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\frac{\sqrt{2}}{2}$. »

2. **Énoncé 2 :** Dans le plan complexe d'origine O, on considère, pour tout entier naturel non nul n, les points M_n d'affixe $z_n = e^{\frac{2in\pi}{3}}$.

Proposition 2 : «Les points O, M₁ et M₂₀ sont alignés. »

3. **Énoncé 3 :** On considère une fonction f, sa dérivée f' et son unique primitive F s'annulant en x = 0. Les représentations graphiques de ces trois fonctions sont données (dans le désordre) par les courbes ci-dessous.

Proposition 3 : «La courbe 3 ci-dessous est la représentation graphique de f ».



4. **Énoncé 4 :** On considère, dans un repère orthonormé de l'espace, le point A(0; 0; 3) et le plan P d'équation 2x - y +z = 0.

Proposition 4 : «La sphère de centre A et de rayon 2 et le plan P sont sécants. »

Amérique du Nord mai 2012

Restitution organisée des connaissances

On rappelle que $\lim_{t\to+\infty}\frac{\mathrm{e}^t}{t}=+\infty.$ Démontrer que $\lim_{x\to+\infty}\frac{\ln(x)}{x}=0.$

Partie A

On considère la fonction f définie sur $[1; +\infty[$ par f(x) =

On note \mathscr{C} sa courbe représentative dans un repère orthonormal $(O; \vec{i}; \vec{j})$.

(a) Soit g la fonction définie sur [1 ; $+\infty$ [par g(x) = $x^2 - 1 + \ln(x)$.

Montrer que la fonction g est positive sur $[1; +\infty[$.

- i. Montrer que, pour tout x de $[1; +\infty[, f'(x) =$ $\overline{x^2}$
 - ii. En déduire le sens de variation de f sur $[1; +\infty[$.
 - iii. Montrer que la droite \mathcal{D} d'équation y = x est une asymptote à la courbe \mathscr{C} .
 - iv. Étudier la position de la courbe $\mathscr C$ par rapport à
- (c) Pour tout entier naturel k supérieur ou égal à 2, on note respectivement M_k et N_k les points d'abscisse k $de \mathscr{C} et \mathscr{D}$.
 - i. Montrer que, pour tout entier naturel k supérieur ou égal à 2, la distance $M_k N_k$ entre les points M_k et N_k est donnée par $M_k N_k = \frac{\ln(k)}{k}$.
 - ii. Écrire un algorithme déterminant le plus petit entier k_0 supérieur ou égal à 2 tel que la distance $M_k N_k$ soit inférieure ou égale à 10^{-2} .

VI Asie juin 2012

(a) On considère l'algorithme suivant :

	Caisin and all atmints and an acitif			
	Saisir un réel strictement positif			
	non nul <i>a</i>			
Entrée	Saisir un réel strictemenl positif			
	non nul b ($b > a$)			
	Saisir un entier naturel non nul N			
	Affecter à u la valeur a			
Initialisation	Affecter à v la valeur b			
	Affecter à n la valeur 0			
	TANTQUE $n < N$			
	Affecter à n la valeur $n+1$			
	Affecter à u la valeur $\frac{a+b}{2}$			
Traitement	Affecter à ν la valeur			
	$\sqrt{a^2+b^2}$			
	$\sqrt{{2}}$			
	' Affecter à a la valeur u			
	Affecter à b la valeur v			
Sortie	Afficher u , afficher v			

Reproduire et compléter le tableau suivant, en faisant fonctionner cet algorithme pour a = 4, b = 9 et N = 2. Les valeurs successives de u et v seront arrondies au millième.

n	а	b	и	υ
0	4	9		
1				
2				

Dans la suite, a et b sont deux réels tels que 0 < a < b. On considère les suites (u_n) et (v_n) définies par : $u_0 = a$, $v_0 = b$ et, pour tout entier naturel n:

$$u_{n+1} = \frac{u_n + v_n}{2}$$
 et $v_{n+1} = \sqrt{\frac{u_n^2 + v_n^2}{2}}$

- (b) i. Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n > 0$ et $v_n > 0$.
 - ii. Démontrer que, pour tout entier naturel n: $v_{n+1}^2-u_{n+1}^2=\left(\frac{u_n-v_n}{2}\right)^2.$ En déduire que, pour tout entier naturel n, on a $u_n \le v_n.$
- (c) i. Démontrer que la suite (u_n) est croissante.
 - ii. Comparer $v_{n+1}^{\bar{2}}$ et v_n^2 . En déduire le sens de variation de la suite (v_n) .
- (d) Démontrer que les suites (u_n) et (v_n) sont convergentes.

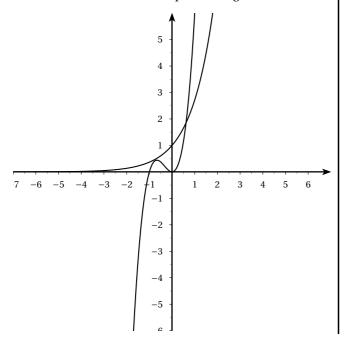
VII Centres étrangers juin 2012

On considère l'équation (E) d'inconnue x réelle :

$$e^x = 3(x^2 + x^3)$$

PARTIE A: conjecture graphique

Le graphique ci-dessous donne la courbe représentative de la fonction exponentielle et celle de la fonction f définie sur \mathbb{R} par $f(x) = 3(x^2 + x^3)$ telles que les affiche une calculatrice dans un même repère orthogonal.



À l'aide du graphique ci-dessus, conjecturer le nombre de solutions de l'équation (*E*) et leur encadrement par deux entiers consécutifs.

PARTIE B: étude de la validité de la conjecture graphique

- (a) i. Étudier selon les valeurs de x, le signe de $x^2 + x^3$.
 - ii. En déduire que l'équation (*E*) n'a pas de solution sur l'intervalle $]-\infty;-1]$.
 - iii. Vérifier que 0 n'est pas solution de l'équation (*E*).
- (b) On considère la fonction h, définie pour tout nombre réel x de]-1;, $0[\cup]0$; $+\infty[$ par :

$$h(x) = \ln 3 + \ln (x^2) + \ln(1+x) - x.$$

Montrer que, sur] – 1 ; $0[\cup]0$; $+\infty[$, l'équation (E) est équivalente à l'équation h(x) = 0.

(c) i. Montrer que pour tout nombre réel x appartenant à]-1; $0[\cup]0$; $+\infty[$, on a :

$$h'(x) = \frac{-x^2 + 2x + 2}{x(x+1)}$$

- ii. Déterminer les variations de la fonction h.
- iii. Déterminer le nombre de solutions de l'équation h(x) = 0 et donner une valeur arrondie au centième de chaque solution.
- (d) Conclure quant à la conjecture de la partie A.