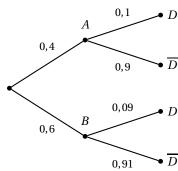
Correction du contrôle commun nº 4

Exercice 1 (5 points)

1. (a)



- (b) On demande $p(A \cap D)$. $p(A \cap D) = p_D(A) \times p(A) = 0, 4 \times 0, 1, \text{ donc}$ $p(A \cap D) = \boxed{0,04}.$
- (c) On calcule aussi $p(B \cap B)$ de la même façon, c'est $0.6 \times 0.09 = 0.054$.

A et B sont des évènements formant une partition de l'ensemble des pièces (c'est-à-dire

 $D = (D \cap A) \cup (D \cap B)$ et c'est une réunion d'évènements disjoints),.

Alors: $P(D) = p(D \cap (A \cup B))$ $p(D) = p((D \cap A) \cup (D \cap B)) = p(D \cap A) + p(D \cap B)$ $= p_A(D) \times p(A) + p_B(D) \times p(B)$ (formule des probabilités totales).

Ainsi:

$$p(D) = 0.04 + 0.054 = 0.094$$

(d) On nous demande $p_D(A)$, on utilise la formule :

$$p_{\rm D}({\rm A}) = \frac{p({\rm D} \cap {\rm A})}{p({\rm D})} = \frac{0,04}{0,094} = \frac{40}{94} = \boxed{\frac{20}{47}}$$

2. (a) On a répétition de 150 expériences **identiques** et **in- dépendantes** avec **deux** issues :

X suit donc la loi binomiale de paramètres n = 150 et $p = 0, 1 : X \hookrightarrow \mathcal{B}(150; 0, 1)$.

(b) Pour tout k entier compris entre 0 et 150, on a

$$p(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$
donc

$$p(X = k) = {150 \choose k} \times 0, 1^k \times 0, 9^{150-k}$$

On demande $p(X \le 1)$.

$$p(X \le 1) = p(X = 0) + p(X = 1)$$

$$= 0,9^{150} + 150 \times 0,1 \times 0,9^{149} \approx 2,4610^{-6}$$

(c) $p(X \le 149) = 1 - p(X = 150)$ = $1 - {150 \choose 0} \times 0, 1^0 \times 0, 9^1 = 1 - 10^{-150}$ (valeum)

exacte). (remarque : la calculatrice affiche 1, mais cet événement **n'est pas certain**)

3.
$$p(X \ge 1) = 1 - p(X = 0) = 1 - \binom{n}{0} \times 0, 1^0 \times 0, 9^n = 1 - 0, 9^n.$$

On cherche n tel que $1 - 0, 9^n \ge 0, 99.$
 $1 - 0, 9^n \ge 0, 99 \iff 1 - 0, 99 \le 0, 9^n \iff 0, 01 \le 0, 9^n \iff \ln(0, 01) \le n \ln(0, 9) \iff n \ge \frac{\ln(0, 01)}{\ln(0, 9)} \approx 43, 7.$

Le plus petit entier tel que $p(X \ge 1) \ge 0, 99$ est $n = 44$.

Exercice 2 (5 points)

Partie A:

1. Soient *n* et *p* deux naturels distincts.

$$f_n(x) = f_p(x) \iff \frac{\mathrm{e}^{-nx}}{1 + \mathrm{e}^{-x}} = \frac{\mathrm{e}^{-px}}{1 + \mathrm{e}^{-x}}$$

$$\iff \mathrm{e}^{-nx} = \mathrm{e}^{-px} \text{ (car } 1 + \mathrm{e}^{-x} > 0)$$

$$\iff -nx = -px \text{ (par croissance de la fonction ln)}$$

$$\iff \boxed{x = 0} \text{ (car } n \neq p).$$

Quel que soit $n \in \mathbb{N}$, $f_n(0) = \frac{e^0}{1 + e^0} = \frac{1}{2}$.

Toutes les courbes \mathcal{C}_n passent par le point $\left(0, \frac{1}{2}\right)$ et ont ce point pour seul point commun.

2. Étude de la fonction f_0

(a)
$$f_0(x) = \frac{1}{1 + e^{-x}}$$
.

Cette fonction est dérivable sur ℝ et

$$f_0'(x) = -\frac{-e^{-x}}{(1+e^{-x})^2} = \boxed{\frac{e^{-x}}{(1+e^{-x})^2}}.$$

Comme $e^{-x} > 0$ et $(1 + e^{-x})^2 >$, on en déduit que $f_0'(x) > 0$.

 $\overline{\text{La fonction } f_0}$ est donc **croissante** sur \mathbb{R} .

(b) On sait que $\lim_{x \to -\infty} e^x = 0$. Donc $\lim_{x \to -\infty} e^{-x} = +\infty$

Donc $\lim_{x \to -\infty} f_n(x) = 0$. Ceci signifie que l'axe des abscisses est **asymptote** à la courbe \mathcal{C}_0 au voisinage de $-\infty$.

On sait que $\lim_{x \to +\infty} e^{-x} = 0$, donc $\lim_{x \to +\infty} f_0(x) = 1$.

Ceci signifie que la droite d'équation y = 1 est **asymptote** horizontale à la courbe \mathcal{C}_0 au voisinage de $+\infty$.

(c)
$$\begin{array}{c|cccc} x & -\infty & +\infty \\ \hline f(x) & & & 1 \\ \hline \end{array}$$

3. Étude de la fonction f_1

(a) On a $f_1(x) = \frac{e^{-x}}{1 + e^{-x}} = \frac{1}{e^x + 1}$ en multipliant numérateur et dénominateur par e^x .

•
$$\lim_{x \to -\infty} e^x = 0$$
 donc $\lim_{x \to -\infty} f_1(x) = 1$

•
$$f_1(x) = \frac{e^{-x}}{1 + e^{-x}}$$
; $\lim_{x \to +\infty} (-x) = -\infty$ donc

$$\lim_{x \to +\infty} e^{-x} = \lim_{x \to -\infty} e^{x} = 0$$
, d'où $\lim_{x \to +\infty} f_1(x) = 0$

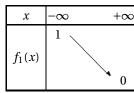
•
$$f_1(x) = \frac{1}{1 + e^x} = \frac{1}{u(x)} \text{ avec } u(x) = 1 + e^x.$$

 $f'_1 = \left(\frac{1}{u}\right)' = -\frac{u'}{u^2} \text{ avec } u'(x) = e^x.$

Alors
$$f'_1(x) = -\frac{e^x}{(1+e^x)^2} < 0$$
 car $e^x > 0$ donc f_1 est

décroissante.

Tableau de variation:



- 4. Étude de la fonction f_n pour $n \ge 2$
 - (a) $f_n(x) = \frac{e^{-nx}}{1 + e^{-x}}$. En multipliant chaque terme par $e^{nx} > 0$, $f_n(x) = \frac{1}{e^{nx} + e^{(n-1)x}}$.
 - (b) Pour $p \ge 2$, $\lim_{x \to +\infty} e^{px} = +\infty$, donc en utilisant l'écriture du \mathbf{a}_{+} , $\lim_{x \to +\infty} f_{n}(x) = 0$.

 Limite en $-\infty$: $\lim_{x \to -\infty} e^{nx} = 0_{+}$ et $\lim_{x \to -\infty} e^{(n-1)x} = 0_{+}$ donc par limite de l'inverse $\lim_{x \to +\infty} e^{-x} = +\infty$
 - (c) f_n quotient de sommes de fonctions dérivables est dérivable car $e^{nx} + e^{(n-1)x} > 0$.

En utilisant l'écriture trouvée au début de la question:

$$f'_n(x) = -\frac{ne^{nx} + (n-1)e^{(n-1)x}}{\left(e^{nx} + e^{(n-1)x}\right)^2}$$

Comme $n \ge 2$, cette dérivée est **négative** quel que soit x réel. Les fonctions (f_n , $n \ge 2$) sont donc **décroissantes** de $+\infty$ à 0.

Partie B : Étude d'une suite liée aux fonctions f_n

1.
$$u_1 = \int_0^1 f_1(x) dx = \int_0^1 \frac{e^{-x}}{1 + e^{-x}} dx$$
.

En posant $u(x) = 1 + e^{-x}$, $u'(x) = -e^{-x}$, on remarque que la fonction à intégrer est $-\frac{u'(x)}{u(x)}$ dont une primitive est la fonction $-\ln(1+e^{-x})$.

Donc
$$u_1 = [-\ln(1 + e^{-x})]_0^1 = \boxed{-\ln(1 + e^{-1}) + \ln 2}$$

Par linéarité, on a :

$$u_0 + u_1 = \int_0^1 \frac{1}{1 + e^{-x}} dx + \int_0^1 \frac{e^{-x}}{1 + -x} dx = \int_0^1 \frac{1 + e^{-x}}{1 + e^{-x}} dx$$
$$= \int_0^1 1 dx = \boxed{1}.$$

On en déduit $u_0 + u_1 = 1$ donc

$$u_0 = 1 - u_1 = 1 - \ln 2 + \ln (1 + e^{-1})$$

2. On a la suite d'inéquations :

$$e^{-x} > 0 \iff 1 + e^{-x} > 1 \iff 0 < \frac{1}{1 + e^{-x}} < 1$$

$$\iff 0 < \frac{e^{-nx}}{1 + e^{-x}} < e^{-nx} \text{ donc } \boxed{0 \le f_n(x) \le e^{-nx}}.$$

En intégrant ces trois fonctions sur [0; 1] , on trouve, par **conservation de l'ordre** :

$$0 < \int_0^1 \frac{e^{-nx}}{1 + e^{-x}} dx < \int_0^1 e^{-nx} dx \iff 0 < u_n < \int_0^1 e^{-nx} dx.$$

3.
$$\int_0^1 e^{-nx} dx = \left[-\frac{1}{n} e^{-nx} \right]_0^1 = -\frac{1}{n} (e^{-n} - 1) = \frac{1}{n} (1 - e^{-n}).$$

Par limite au voisinage de $+\infty$:

$$\lim_{x \to +\infty} e^{-n} = 0, \lim_{x \to +\infty} 1 - e^{-n} = 1, \lim_{x \to +\infty} \frac{1}{n} = 0, \text{ donc par produit :}$$

$$\lim_{x \to +\infty} \frac{1}{n} (1 - e^{-n}) = 0.$$

En utilisant l'encadrement de la question **2.**, et d'après le théorème des « gendarmes », on obtient

$$\lim_{x\to+\infty}u_n=0.$$

La suite est donc convergente. vers 0

Exercice 3 (5 points)

Restitution organisée de connaissances voir cours

Les deux parties peuvent être traitées indépendamment.

Partie A

- 1. $z^2 2z + 2 = 0$ a pour discriminant $\Delta = -4 < 0$. L'équation a deux solutions complexes conjuguées : $\boxed{z_1 = 1 - i}$ et $\boxed{z_2 = \overline{z_1} = 1 + i}$.
- 2. Soit M_1 d'affixe $z_1 = 1 i$.

On a
$$AM_1 = |z_1 - z_A| = |1 - i - 1| = |-i| = 1$$
.
De même $AM_2 = |z_2 - z_A| = |1 + i - 1| = |i| = 1$.

Ces deux résultats signifient que M_1 et M_2 appartiennent au cercle de centre A et de rayon 1 soit au cercle \mathscr{C} .

Partie B

1. Figure : voir à la fin de l'exercice.

2.
$$z' = \frac{2z-1}{2z-2} \Rightarrow z'-1 = \frac{2z-1}{2z-2} - 1 \iff z'-1 = \frac{2z-1-2z+2}{2z-2}$$

 $\iff z''-1 = \frac{1}{2(z-1)} \iff (z'-1)(z-1) = \frac{1}{2}.$

- 3. Le résultat précédent entraîne :
 - en termes de modules : $AM \times AM' = \frac{1}{2}$
 - le produit des deux complexes étant non nul aucun des deux facteurs ne peut l'être, et en particulier $z'-1\neq 0 \iff z'\neq 1$, soit $M'\neq A$;
 - en termes d'argument : $\arg[(z'-1)(z-1)] = 0 + 2k\pi$. Or $\arg[(z'-1)(z-1)] = (\overrightarrow{u}; \overrightarrow{AM}) + (\overrightarrow{u}; \overrightarrow{AM'})$, donc

 $(\overrightarrow{u}; \overrightarrow{AM}) + (\overrightarrow{u}; \overrightarrow{AM}') = 0 + 2k\pi$, où k est un entier relatif

4. On a
$$z_{P} = 1 + e^{i\frac{\pi}{4}} \iff z_{P} - 1 = e^{i\frac{\pi}{4}} \Rightarrow |z_{P} - 1| = \left| e^{i\frac{\pi}{4}} \right| \iff |z_{P} - 1| = \boxed{1}.$$

Cette dernière égalité montre que P appartient au cercle de centre A et de rayon 1, donc au cercle $\mathscr C$.

Il ne reste plus qu'à construire sur ce cercle le point tel que $(\overrightarrow{u}, \overrightarrow{AP}) = \frac{\pi}{4}$.

5. On a AP ×AP' =
$$\frac{1}{2}$$
; or AP = 1, donc $AP' = \frac{1}{2}$ le point P'

appartient au cercle \mathscr{C}_1 de centre A et de rayon $\frac{1}{2}$.

D'autre part on a
$$(\overrightarrow{u}, \overrightarrow{AP'}) = -\frac{\pi}{4}$$
.

On peut donc construire P_1 symétrique sur le cercle $\mathscr C$ du point P autour de l'axe horizontal contenant A. Le point P' est le point commun à $[AP_1]$ et au cercle $\mathscr C_1$. Voir Figure.

6. (a) On a donc $z = \frac{3}{4} + it$ avec $t \in \mathbb{R}$.

Or:
$$(z'-1)(z-1) = \frac{1}{2}$$
 donc $z'-1 = \frac{1}{2(z-1)}$ donc $z'=1+\frac{1}{2(z-1)}=1+\frac{1}{2(\frac{3}{4}+it-1)}=1+\frac{1}{2(-\frac{1}{4}+it)}=1+\frac{1}{2(\frac{-1}{4}+it)}=1+\frac{1}{2(\frac{-1+4it}{4})}=1+\frac{2}{-1+4it}=\frac{-1+4it}{-1+4it}$.

On en déduit :
$$z' = \left| \frac{1+4it}{-1+4it} \right| = \frac{|1+4it|}{|-1+4it|}$$

= $\frac{\sqrt{(1)^2 + (4t)^2}}{\sqrt{(-1)^2 + (4t)^2}} = 1 \text{ donc } \left| \frac{|z'|}{|z'|} = 1 \right|$

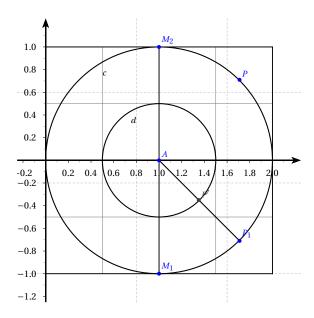
Le point M" appartient au cercle \mathscr{C}' de centre O de rayon 1.

(b) Un point M' de \mathscr{C}' a une affixe qui peut s'écrire $z'=\mathrm{e}^{\mathrm{i} a}$ avec $a\in\mathbb{R}$. Son ou ses antécédents par f vérifient :

$$e^{ia} = \frac{2z-1}{2z-2} \iff 2ze^{ia} - 2e^{ia} = 2z - 1 \iff 2z(e^{ia} - 1) = 2e^{ia} - 1 \iff z = \frac{2e^{ia} - 1}{e^{ia} - 1} \text{ si } e^{ia} - 1 \neq 0.$$

Or
$$e^{ia} - 1 = 0 \iff e^{ia} = 1 \iff a = 0 \iff z = 1$$
.

C'est le point A et on sait que ce point n'a pas d'image par f. La réponse est : non.



Exercice 4 (5 points)

Pour les élèves n'ayant pas suivi l'enseignement de spécialité

Partie A

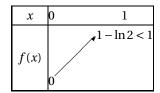
$$f(x) = x - \ln\left(x^2 + 1\right).$$

- 1. $f(x) = x \iff x \ln(x^2 + 1) = x \iff \ln(x^2 + 1) = 0$ $\iff x^2 + 1 = 1 \iff x^2 = 0 \iff \boxed{x = 0}$
- 2. f somme de fonctions dérivables sur [0; 1] est dérivable et sur cet intervalle :

$$f'(x) = 1 - 2x \times \frac{1}{x^2 + 1} = \frac{x^2 + 1 - 2x}{x^2 + 1} = \boxed{\frac{(x - 1)^2}{x^2 + 1}}$$

On a quel que soit x, $x^2 + 1 \ge 1 > 0$ et sur [0; 1], $(x-1)^2 \ge 0$, donc sur [0; 1], $f'(x) \ge 0$: la fonction est donc **croissante** sur [0; 1].

On a vu que f(0) = 0 et $f(1) = 1 - \ln 2 < 1$. La fonction est croissante de 0 à $1 - \ln 2 < 1$, donc toutes les images f(x) appartiennent à l'intervalle [0; 1].



Partie B

- 1. Figure à la fin de l'exercice (Annexe exercice IV)
- 2. On effectue une démonstration par récurrence :

Initialisation : $u_0 = 1 \le 1$, donc $u_0 \in [0; 1]$.

Hérédité : Supposons qu'il existe un entier p tel que $u_p \in [0; 1]$; d'aprËs la partie A, on a $u_{p+1} = f(u_p)$ et on a vu que si $u_p \in [0; 1]$, alors

$$f(u_p) = u_{p+1} \in [0; 1]$$

D'après l'axiome de récurrence, la propriété est vraie pour tout $n \in \mathbb{N}$.

On a donc pour tout naturel n, $u_n \in [0; 1]$.

3. Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = -\ln(u_n^2 + 1)$

Or
$$u_n \ge 0 \Rightarrow u_n^2 \ge 0 \Rightarrow u_n^2 + 1 \ge 1 \Rightarrow \ln(u_n^2 + 1) \ge 0$$

 $\iff 0 \ge -\ln(u_n^2 + 1).$

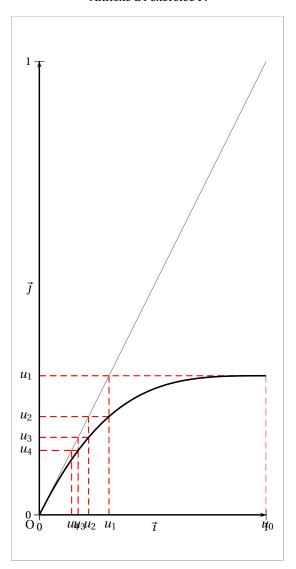
Conclusion: quel que soit le naturel n, $u_{n+1} - u_n \le 0$: la suite est **décroissante**.

4. La suite est décroissante et tous ses termes sont minorés par 0 : elle est donc **convergente** vers une limite supérieure ou égale à 0.

f est continue, donc la limite ℓ est solution de l'équation f(x) = x. La seule solution est 0 (d'après A.1.) donc $\ell = 0$.

On a donc $\lim_{n \to +\infty} u_n = 0$

Annexe à l'exercice IV



Exercice 4 de spécialité (5 points)

Pour les élèves ayant suivi l'enseignement de spécialité

Partie A. Quelques exemples

- 1. $4 \equiv 1 \mod 3$, donc $4^n \equiv 1^n \mod 3$ et finalement $4^n \equiv 1 \mod 3$
- 2. 4 est premier avec 29 (29 est premier). Donc d'après le petit théorème de Fermat 4²⁹⁻¹ − 1 ≡ 0 mod 29 donc 4²⁸ − 1 est divisible par 28.
- 3. $4 = 0 \times 17 + 4$;
 - $4^2 = 0 \times 17 + 16$;
 - $4^3 = 3 \times 17 + 13$;
 - $4^4 = 15 \times 17 + 1$.

La dernière égalité montre que $\boxed{4^4 \equiv 1 \mod 17}$, d'où $\boxed{\left(4^4\right)^k \equiv 1^k \mod 17}$ soit $4^{4k} \equiv 1 \mod 17$ ou encore $4^{4k} - 1 \equiv 0 \mod 17$.

Conclusion: $4^{4k} - 1$ est divisible par 17

4. On a $4^2 = 16 = 3 \times 5 + 1$ ou $4^2 \equiv 1 \mod 5$ d'où il résulte que $4^{2k} \equiv 1 \mod 5$ ou encore $\boxed{4^{2k} - 1 \equiv 0 \mod 5}$.

Conclusion: $4^n - 1$ est divisible par 5 si n est pair.

En revanche : de $4 \equiv 4 \mod 5$ et $4^{2k} \equiv 1 \mod 5$. Il résulte par produit que $\boxed{4^{2k+1} \equiv 4 \mod 5}$

Conclusion: $4^n - 1$ est divisible par 5 si et seulement si n est pair. (équivalence)

5. Diviseurs premiers de 4²⁸ – 1 : la question 2 a déjà donné le nombre 29 ; la question 3 a donné le diviseur premier 17 ; la question 4 a donné le diviseur 5.

D'autre part, $4 \equiv 1 \mod 3$ entraîne $4^n \equiv 1 \mod 3$ ou encore $4^n - 1$ est divisible par 3 qui est premier. Il y a également 5, 43.

Partie B. Divisibilité par un nombre premier

1. $4 = 2^2$; si p est premier différent de 2, il est premier avec 4, donc d'après le petit théorème de Fermat $4^{p-1} - 1 \equiv 0 \mod p$ ou $4^{p-1} \equiv 1 \mod p$.

Le premier premier différent de 2 est 3, donc $n = p - 1 \ge 1$

- 2. (a) On a donc : $4^n \equiv 1 \mod p$, $4^b \equiv 1 \mod p$ et n = bq + r avec r < b. On déduit de la seconde congruence que $4^{bq} \equiv 1 \mod p$ et par quotient avec $4^{bq+r} \equiv 1 \mod p$ que $4^r \equiv 1 \mod p$.
 - Or *b* étant le plus petit naturel vérifiant $4^b \equiv 1 \mod p$, il en résulte que $4^r = 1$ ou encore r = 0.
 - (b) On vient démontrer dans la question précédente que si $4^n \equiv 1 \mod p$, alors n est multiple de b, b étant le plus naturel positif tel que $4^b \equiv 1 \mod p$.

Réciproquement : si n = kb, de $4^b \equiv 1 \mod p$, on déduit que $\left(4^b\right)^k \equiv 1^k \mod p$ soit $4^n \equiv 1 \mod p$. L'équivalence est donc démontrée.

(c) D'après la question B. $14^{p-1} \equiv 1 \mod p$ et soit b le plus petit entier tel que $4^b \equiv 1 \mod p$. D'après la question 2. b. il en résulte que p-1 est multiple de b ou encore b (non nul) divise p-1.