# Fonctions numériques : dérivation

## Table des matières

| I   | Notio                            | n de tangente à une courbe                                         |
|-----|----------------------------------|--------------------------------------------------------------------|
| II  | Nomb                             | ore dérivé de $f$ en $a$ et fonction dérivée :                     |
| III | Table                            | a <mark>u des dérivées usuelles : </mark>                          |
| IV  | Dériv                            | <mark>ées et opérations : </mark>                                  |
| V   | Dériv                            | ée de la composée de quelques fonctions :                          |
|     | V.1                              | Dérivée de $f \circ g$                                             |
|     | V.2                              | Dérivée de $x \mapsto \sqrt{u(x)}$                                 |
|     | V.3                              | Dérivée de $x \mapsto u^n(x), n \in \mathbb{N}^*$                  |
|     | V.4                              | Dérivée de la fonction $x \mapsto f(ax+b)$                         |
|     | V.5                              | Dérivée de $\sin u$ et $\cos u$                                    |
| VI  | Application de la dérivabilité : |                                                                    |
|     | VI.1                             | Utilisation du nombre dérivé pour le calcul de certaines limites : |
|     | VI.2                             | Sens de variation d'une fonction:                                  |

### I Notion de tangente à une courbe

Soit f une fonction définie sur un intervalle I de courbe représentative  $\mathscr{C}_f$  et soit A un point fixe de  $\mathscr{C}_f$ . Soit M un point variable de  $\mathscr{C}_f$ . On trace la droite (AM) qui est sécante à  $\mathscr{C}_f$ . On fait tendre M vers A. Si, lorsque M tend vers A, la sécante admet une position limite, on dit que cette limite est tangente à  $\mathscr{C}_f$ .



### II Nombre dérivé de f en a et fonction dérivée :

## Définition

Notons *a* l'abscisse de *A* et *x* l'abscisse de *M*. Le coefficient directeur de la sécante (*AM*) est :  $\frac{f(x) - f(a)}{x - a}$ .

Dire que la sécante a une position limite qui est la droite tangente à  $\mathscr{C}_f$ en A signifie que  $\lim_{x\to a} \frac{f(x) - f(a)}{x-a}$  existe.

Si ce nombre **existe** et s'il est **fini**, on pose :  $\mathbf{f}'(\mathbf{a}) = \lim_{\mathbf{x} \to \mathbf{a}} \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})}{\mathbf{x} - \mathbf{a}}$  et ce nombre est le **nombre dérivé** de f en a.

On dit alors que f est dérivable en a.



En posant x = a + h, on obtient:  $\mathbf{f}'(\mathbf{a}) = \lim_{\mathbf{h} \to \mathbf{0}} \frac{\mathbf{f}(\mathbf{a} + \mathbf{h}) - \mathbf{f}(\mathbf{a})}{\mathbf{h}}$ .

Exemple:  $f(x) = x^2$ .

Pour tout  $a \in \mathbb{R}$ :  $\frac{f(a+h)-f(a)}{h} = \frac{[a+h]^2 - a^2}{h} = \frac{a^2 + 2ah + h^2 - a^2}{h} = \frac{2ah + h^2}{h} = 2a + h.$ 

Par conséquent :  $\lim_{h\to 0} \left( \frac{f(a+h) - f(a)}{h} \right) = 2a$ .

f est dérivable en a et f'(a) = 2a

Par définition, f'(a) est le coefficient directeur de la tangente à  $\mathscr{C}_f$  en a.



L'équation de la tangente est alors :  $\mathbf{v} = \mathbf{f}'(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \mathbf{f}(\mathbf{a})$ .

#### **Démonstration:**

Rappel : la droite, de coefficient directeur a et passant par le point  $M_0$  de coordonnées  $(x_0; y_0)$  a pour équation  $y - y_0 = a(x - x_0)$ .

En effet, l'équation est de la forme y = ax + b.

Comme  $M_0$  appartient à cette droite, ses coordonnées vérifient cette équation, donc  $y_0 = ax_0 + b$ .

Par conséquent :  $\begin{cases} y = ax + b \\ y_0 = ax_0 + b \end{cases}$ 

Par soustraction, on obtient :  $y - y_0 = a(x - x_0)$ .

Pour la tangente, on obtient donc :  $y - y_A = f'(a)(x - x_A)$  qui donne  $y = f'(a)(x - x_A) + f(a)$ .



f est dérivable sur un intervalle ouvert I si f est dérivable en tout a de I.

## Remarque

La dérivée f' de f est elle-même une fonction. Si elle est dérivable, on appelle f'' sa dérivée (dérivée seconde de f).

Cette dérivée seconde peut elle-même être dérivable et ainsi de suite. Les dérivées d'ordre n, avec  $n \ge 3$ , se notent  $f^{(n)}$ .

Ainsi: f'' = (f')';  $f^{(3)} = (f'')'$  et plus généralement  $f^{(n+1)} = (f^{(n)})'$ 

#### **Exemples:**

- 1. Soit  $f(x) = 3x^4 + 5x^2 + 2x + 1$ . On a :  $f'(x) = 12x^3 + 10x + 2$ ;  $f''(x) = 36x^2 + 10$ ;  $f^{(3)}(x) = 72x$  :  $f^{(4)}(x) = 72$ ;  $f^{(5)}(x) = 0$  et les dérivées suivantes sont toutes égales à la fonction nulle.
- 2. Soit  $f(x) = \sin x$ . Alors :  $f'(x) = \cos x$ ;  $f''(x) = -\sin x$ ;  $f^{(3)}(x) = -\cos x$ ;  $f^{(4)}(x) = \sin x = f(x)$ . On retombe sur la fonction initiale.
- 3. Imaginons qu'il existe une fonction f définie et dérivable sur  $\mathbb{R}$  telle que, f'(x) = f(x). f est-elle dérivable à l'ordre 3 si oui, que vaut  $f^{(3)}$ ?

  Réponse: f' = f donc f' est dérivable et f'' = (f')' = f' et de même  $f^{(3)} = f$ .

  On pourrait alors montrer par récurrence, que la fonction f vérifie alors: pour tout f'(n) = f.

  On étudiera cette fonction plus en détail dans un prochain chapitre.

#### **Exercices**

- Montrer que la fonction  $x \mapsto |x|$  n'est pas dérivable en 0.
- Étudier la dérivabilité de la fonction  $x \mapsto x|x|$  en 0.

#### **Solutions:**

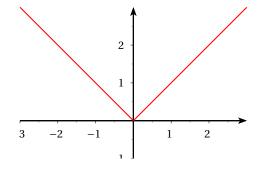
• Soit 
$$f$$
 la fonction  $x \mapsto |x|$ .  
 $\forall x \neq 0, \frac{f(x) - f(0)}{x - 0} = \frac{|x| - 0}{x - 0} = \frac{|x|}{x}$ .  
Si  $x < 0, \frac{|x|}{x} = \frac{-x}{x} = -1$  et pour  $x > 0, \frac{|x|}{x} = \frac{x}{x} = 1$ .

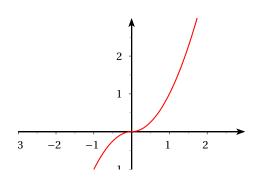
On en déduit que : 
$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x < 0}} (-1) = -1$$
, alors que  $\lim_{\substack{x \to 0 \\ x > 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x > 0}} (1) = 1$ .

La limite à gauche et à droite n'est pas la même, donc la limite en 0 n'existe pas; f n'est pas dérivable en 0 (mais l'est à gauche et à droite); on dit que la courbe admet une demi-tangente à gauche et une demi-tangente à droite.

• Soit  $g: x \mapsto x|x|$ . Cette fois, on a:  $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = \lim_{x\to 0} \frac{x|x|}{x} = \lim_{x\to 0} (|x|) = 0$ ; la limite existe, donc la fonction g est dérivable en 0 et la courbe représentative de g a une tangente en 0.

Voici les deux représentations graphiques de f et de g.





### Tableau des dérivées usuelles :

| Fonction $f$ définie par :                                      | Fonction $f'$ définie par :               | Domaine de décidabilité de validité |
|-----------------------------------------------------------------|-------------------------------------------|-------------------------------------|
| $f(x) = k \in \mathbb{R}$                                       | f'(x) = 0                                 | $\mathbb{R}$                        |
| $f(x) = x^n (n \in \mathbb{N}^*)$                               | $f'(x) = nx^{n-1}$                        | $\mathbb{R}$                        |
| $f(x) = \frac{1}{x}$                                            | $f'(x) = -\frac{1}{x^2}$                  | $\mathbb{R}^*$                      |
| $f(x) = \frac{1}{x^n} = x^{-n} \ (n \in \mathbb{N}, \ n \ge 2)$ | $f'(x) = -\frac{n}{x^{n+1}} = -nx^{-n-1}$ | $\mathbb{R}^*$                      |
| $f(x) = \sqrt{x}$                                               | $f'(x) = \frac{1}{2\sqrt{x}}$             | ]0; +∞[                             |
| $f(x) = \cos x$                                                 | $f'(x) = -\sin x$                         | $\mathbb{R}$                        |
| $f(x) = \sin x$                                                 | $f'(x) = \cos x$                          | $\mathbb{R}$                        |

### Dérivées et opérations :

Soient *u*, *v* deux fonctions dérivables sur un intervalle *I* et *k* un réel.

• 
$$(ku)' = ku'$$

• 
$$(u + v)' = u' + v'$$

$$\bullet \ (uv)' = u'v + uv'$$

• 
$$(u+v)' = u' + v'$$
  
•  $(uv)' = u'v + uv'$   
•  $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}, u(x) \neq 0$ 

$$\left| \bullet \left( \frac{u}{v} \right)' = \frac{u'v - uv'}{v^2}, \ v(x) \neq 0 \right|$$

### **Exemples:**



### 🕄 Théorème (admis)

Soit f une fonction définie sur un intervalle ouvert I et dérivable en  $a \in I$ ; alors, f est continue en a

Attention, la réciproque est fausse; une fonction peut être continue en a, mais pas dérivable; exemple, la fonction  $x \mapsto |x|$  en 0.

### Dérivée de la composée de quelques fonctions :

### V.1 Dérivée de $f \circ g$



### Théorème admis

Soit g une fonction définie et dérivable sur un intervalle I et à valeurs dans J et f une fonction définie et dérivable sur J.

Alors  $f \circ g$  est dérivable et  $(f \circ g)' = g' \times (f' \circ g)$ . Pour tout  $x \in I$ ,  $(f \circ g)'(x) = g'(x) \times f'(g(x))$ .



Soit u une fonction définie, positive et dérivable sur un intervalle I., de fonction dérivée u'. La fonction f définie sur I par  $f: x \mapsto \sqrt{u(x)}$  est dérivable en tout nombre x tel que  $u(x) \neq 0$  et  $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}.$ 

On applique la formule de dérivations d'une fonction composée avec g = u et  $f: x \mapsto \sqrt{x}$ .

**Exemple:**  $f(x) = \sqrt{3x^2 + 5x + 7}$  définie sur  $\mathbb{R}$ .

$$f(x) = \sqrt{u(x)}$$
 avec  $u(x) = 3x^2 + 5x + 7$  et  $u'(x) = 6x + 5$ .

Alors: 
$$f'(x) = \frac{6x+5}{2\sqrt{3x^2+5x+7}}$$

### **Dérivée de** $x \mapsto u^n(x), n \in \mathbb{N}^*$



Soit u une fonction définie et dérivable sur un intervalle I. Soit u' sa fonction dérivée, et soit n un entier

La fonction  $u^n$  est dérivable et  $(u^n)' = nu' \times u^{n-1}$ .

On applique la formule de dérivation d'une fonction composée avec g = u et  $f(x) = x^n$ .

**Exemples:** 

1. Soit 
$$f: x \mapsto (3x^2 + 5x - 7)^5$$
;  $f = u^5$  avec  $u(x) = (3x^2 + 5x - 7)^5$ .  
On a alors  $f' = (u^7)' = 7u'u^{7-1} = 7u'u^6$  avec  $u'(x) = 6x + 5$ .

Par conséquent : 
$$f'(x) = 7(6x+5)(3x^2+5x-7)^6$$
.

2. Soit 
$$f: x \mapsto \frac{1}{(x^2 + x + 1)^5} \operatorname{sur} \mathbb{R}$$
.

On a 
$$f(x) = (x^2 + x + 1)^{-5}$$
 donc  $f = u^{-5}$  avec 
$$\begin{cases} n = -5 \\ u(x) = x^2 + x + 1 \end{cases}$$
.

$$f' = nu'u^{n-1} = -5u'u^{-6} = -\frac{5u'}{u^6} \text{ avec } u'(x) = 2x + 1.$$

$$Par conséquent: f'(x) = -\frac{5(2x+1)}{(x^2+x+1)^6}$$

Par conséquent : 
$$f'(x) = -\frac{5(2x+1)}{(x^2+x+1)^6}$$

### **V.4 Dérivée de la fonction** $x \mapsto f(ax + b)$



Soient f une fonction définie sur  $\mathbb{R}$  et deux nombres a et b.

La fonction  $g: x \mapsto f(ax+b)$  est dérivable sur  $\mathbb{R}$  et a pour dérivée  $g'x \mapsto a \times f'(ax+b)$ .

#### **Démonstration**

On applique la formule de dérivation d'une fonction composée avec g(x) = ax + b.

**Exemple:** Soit 
$$f: x \mapsto \cos(2x+3)$$
;  $f'(x) = 2\cos'(2x+3) = \boxed{-2\sin(2x+3)}$ 

#### **V.5 Dérivée de** $\sin u$ **et** $\cos u$

Propriété admise : si u est dérivable, sin u est dérivable et  $\cos u$  est dérivable.

- $(\sin u)' = u' \times \sin' u = u' \cos u$
- $(\cos u)' = u' \times \cos' u = -u' \sin u$

Exemple : soit 
$$f(x) = \sin(x^2)$$
.

 $f = \sin u$  avec  $u(x) = x^2$ .

$$f' = u' \cos u$$
 avec  $u'(x)2x$  donc  $f'(x) = 2x \cos(x^2)$ 

### VI Application de la dérivabilité:

### VI.1 Utilisation du nombre dérivé pour le calcul de certaines limites :

On sait que si f est dérivable en a, alors  $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$ .

Exemple: 
$$\frac{\sin x}{x} = \frac{\sin x - \sin 0}{x - 0}$$
 donc  $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \sin'(0) = \cos 0 = 1$ .

#### VI.2 Sens de variation d'une fonction :

## Théorème (admis)

Soit f une fonction dérivable sur un intervalle I.

Si f' = 0 sur I, alors f est constante sur I.

Si f' est strictement positive sur I sauf éventuellement pour un certain nombre fini de valeurs où elle s'annule, alors f est croissante sur I.

Si f' est strictement négative sur I sauf éventuellement pour un certain nombre fini de valeurs où elle s'annule, alors f est décroissante sur I.

#### **Exemple:**

Soit f la fonction définie par :  $f(x) = x^3$  définie sur  $\mathbb{R}$ .  $f'(x) = 3x^2 \ge 0$  et f'(x) = 0 pour x = 0.

On en déduit que la fonction f est strictement croissante sur  $\mathbb{R}$ .

### **Exemple:**

- 1. Étudier le sens de variation de la fonction f définie sur  $\mathbb{R}$  par :  $f(x) = 2\cos x 2 + x^2$ .
- 2. En déduire la comparaison des fonctions  $x \mapsto \cos x$  et  $x \mapsto 1 \frac{x^2}{2}$ .

#### **Solution:**

- 1. f est dérivable sur  $\mathbb{R}$  et  $f'(x) = -2\sin x + 2x$ . Pour étudier le signe de f'(x), dérivons f'.  $f''(x) = -2\cos x + 2 = 2(1 \cos x) \ge 0$ . f' est croissante sur  $\mathbb{R}$  et comme f'(0) = 0, on en déduit le signe de f'. On en déduit que f est décroissante sur  $] \infty$ ; [0] et croissante sur [0]; [0] +[0].
- 2. Le minimum f(0) vaut 0, donc :  $\forall x \in \mathbb{R}$ ,  $\cos x \ge 1 \frac{x^2}{2}$ .