Correction de la feuille 3

1 Polynésie juin 2014

Soient \(f \) et \(g \) les fonctions définies sur \(\mathbb{R} \) par
\[
f(x) = e^x \quad \text{et} \quad g(x) = 2e^x - 1
\]
On note \(\mathcal{C}_f \) et \(\mathcal{C}_g \) les courbes représentatives des fonctions \(f \) et \(g \) dans un repère orthogonal.

1. Intersection de deux courbes :
\[
M(x ; y) \in \mathcal{C}_f \cap \mathcal{C}_g \iff f(x) = g(x) \iff e^x = 2e^x - 1 \iff \begin{cases} X = e^x \\ X^2 - 2X + 1 = (X - 1)^2 = 0 \end{cases} \iff e^x = 1 \iff x = 0
\]
Ainsi \(M \) a pour coordonnées (0 ; 1).

\[
f'(x) = e^x \quad \Rightarrow \quad f'(0) = 1 \quad ; \quad g'(x) = e^x \quad \Rightarrow \quad g'(0) = 1
\]
En \(M \), leurs tangentes ont, toutes deux le même coefficient directeur 1, elles ont donc **mêmes tangentes** \(\Delta \) d’équation \(y - 1 = 1(x - 0) \iff y = x + 1 \).

2. Étude de la position relative de la courbe \(\mathcal{C}_g \) et de la droite \(\Delta \)
Soit \(h \) la fonction définie sur \(\mathbb{R} \) par \(h(x) = 2e^x - x - 2 \).

(a) Limite de la fonction \(h \) en \(-\infty \) :
\[
\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} (-x) = +\infty \quad \text{car} \quad \lim_{x \to -\infty} e^x = 0
\]
(b) Pour tout réel \(x \neq 0 \)
\[
x \left(\frac{e^x}{x} - 1 - \frac{2}{x} \right) = x \cdot e^x \times \frac{2}{x} - x - x^{2} = 2e^x - x - 2 = h(x)
\]
Limite de la fonction \(h \) en \(+\infty \) :
\[
\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} x \cdot \frac{2}{x} = +\infty, \quad \text{car} \quad \lim_{x \to +\infty} 2 = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty
\]
(croissances comparées)

(c) Fonction dérivée de la fonction \(h \) sur \(\mathbb{R} \) :
\[
h'(x) = 2 \times \frac{1}{2} e^x - 1 = e^x - 1
\]
\[
h'(x) > 0 \iff e^x > 1 \iff \frac{x}{2} > 0 \iff x > 0 \quad \text{et} \quad h'(x) < 0 \iff e^x < 1 \iff \frac{x}{2} < 0 \iff x < 0
\]
(d) **Tableau de variations** de la fonction \(h \) sur \(\mathbb{R} \) :

\[
| x | -\infty | 0 | +\infty |
|-------------------|
| h(x) | 0 | +\infty |
\]

(e) La fonction \(h \) possède un minimum en 0 qui est 0. Donc :
\[
\forall x, \ x \in \mathbb{R}, \ h(x) \geq 0 \iff 2e^x - x - 2 = 2e^x - 1 - x - 1 \geq 0 \iff 2e^x - 1 \geq x + 1
\]

(f) Ainsi la courbe \(\mathcal{C}_g \) se trouve au dessus de la droite d’équation \(y = x + 1 \) qui est la droite \(\Delta \).

3. Étude de la position relative des courbes \(\mathcal{C}_f \) et \(\mathcal{C}_g \)

(a) On a vu plus haut (question 1.) que, pour tout réel \(x \), \((\frac{e^x}{x} - 1)^2 = f(x) - g(x) \geq 0 \).

(b) Ainsi la courbe \(\mathcal{C}_f \) se trouve au dessus de la courbe \(\mathcal{C}_g \),
Ainsi, \(|f(x) - g(x)| = (f(x) - g(x)) \).
II Métropole septembre 2014

Sur le graphique ci-dessous, on a tracé, dans un repère orthonormé \(O ; \overrightarrow{i} ; \overrightarrow{j} \), une courbe \(C \) et la droite \((AB)\) où A et B sont les points de coordonnées respectives (0 ; 1) et (-1 ; 3).

\(\text{On désigne par} \ f \ \text{la fonction dérivable sur} \ \mathbb{R} \ \text{dont la courbe représentative est} \ \mathcal{C}. \)

On suppose, de plus, qu’il existe un réel \(a \) tel que pour tout réel \(x \), \(f(x) = x + 1 +axe^{-x^2} \).

1. (a) Le point A a pour abscisse 0 ; \(f(0) = 1 \) donc \(\mathcal{C} \) passe par le point A (0 ; 1).

(b) Le coefficient directeur de la droite \((AB)\) est \(\frac{y_B - y_A}{x_B - x_A} = \frac{3 - 1}{-1 - 0} = -2 \).

(c) D’après la formule \((e^u)' = u'e^u\) et la dérivée d’une somme et d’un produit :
\[
 f'(x) = 1 + 0 + ae^{-x^2} + ax(-2x)e^{-x^2} = 1 - a(2x^2 - 1)e^{-x^2}
\]

(d) On suppose que la droite \((AB)\) est tangente à la courbe \(\mathcal{C} \) au point A ; cela veut dire que le coefficient directeur de \((AB)\) est égal au nombre dérivé de la fonction \(f \) en \(x_A \) soit \(f'(0) \).

On a donc \(f'(0) = -2 \iff 1 - a(0 - 1)e^0 = -2 \iff 1 + a = -2 \iff a = -3 \).

2. D’après la question précédente, pour tout réel \(x \), \(f(x) = x + 1 - 3xe^{-x^2} \) et \(f'(x) = 1 + 3(2x^2 - 1)e^{-x^2} \).

(a) \(\forall x \in \mathbb{R}, e^{-x^2} > 0 \)
\(\forall x \in]-1; 0[, -3x > 0 \) Par produit \(\forall x \in]-1; 0[, -3xe^{-x^2} > 0 \)
\(\forall x \in]-1; 0[, x + 1 > 0 \) par somme, \(\forall x \in]-1; 0[, x + 1 - 3xe^{-x^2} > 0 \)
Donc, pour tout \(x \) de \(]-1; 0[, f(x) > 0 \).

(b) Si \(x \leq -1 \), alors \(x^2 \geq 1 \) donc \(2x^2 \geq 2 \), donc \(2x^2 - 1 \geq 1 \) et donc \(3(2x^2 - 1) \geq 3 \).

Comme pour tout \(x, e^{-x^2} > 0 \), on peut dire que pour tout \(x \leq -1, 3(2x^2 - 1)e^{-x^2} > 0 \) (par produit). Donc, pour tout \(x \leq -1, f'(x) = 1 + 3(2x^2 - 1)e^{-x^2} > 0 \).

(c) Sur \(]-\infty; -1[\), \(f'(x) > 0 \) donc la fonction \(f \) est strictement croissante sur cet intervalle donc sur l’intervalle \(\left[-\frac{3}{2}; -1 \right] \).

Or \(f\left(-\frac{3}{2}\right) \approx -0,026 < 0 \) et \(f(-1) \approx 1,10 > 0 \) donc, d’après le corollaire du théorème des valeurs intermédiaires, l’équation \(f(x) = 0 \) admet une solution unique dans l’intervalle \(\left[-\frac{3}{2}; -1 \right] \) ; on l’appelle \(c \).

Or \(f\left(\frac{3}{2} + 2.10^{-2}\right) \approx 0,017 > 0 \) donc \(c \in \left[-\frac{3}{2}; -\frac{3}{2} + 2.10^{-2} \right] \) et donc \(c < -\frac{3}{2} + 2.10^{-2} \).