Ι

Soit (u_n) la suite définie pour $n \ge 1$ par

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}.$$

- 1. Soit $n \ge 1$. Justifier que, pour tout k avec $1 \le k \le n$, on a : $\frac{1}{\sqrt{k}} \ge \frac{1}{\sqrt{n}}$.
- 2. En déduire que, pour tout entier $n \ge 1$, $u_n \ge \sqrt{n}$.
- 3. En déduire la limite de la suite (n).

II

Étudier
$$\lim_{n\to+\infty} \left(\frac{\sin n}{n+1}\right)$$
.

III Vrai ou Faux?

Dire si les affirmations suivantes sont vraies ou fausses et justifier.

- 1. Si une suite (u_n) converge vers 0, alors la suite (v_n) définie par $v_n = \frac{1}{u_n}$ tend vers $+\infty$.
- 2. Si une suite (u_n) converge vers $+\infty$, alors la suite (v_n) définie par $v_n = \frac{1}{u_n}$ converge vers 0.
- 3. Si une suite (u_n) converge vers 0, alors la suite (v_n) définie par $v_n = nu_n$ converge vers 0.
- 4. Si une suite (u_n) tend vers $+\infty$ et si une suite (v_n) est convergente, alors la suite (w_n) définie par $w_n = u_n v_n$ tend vers vers $+\infty$.

IV

Dans chacun des cas suivants, trouver une suite (u_n) et une suite (v_n) telles que :

- 1. $\lim_{n \to +\infty} u_n = 0; \lim_{n \to +\infty} v_n = +\infty$ $\text{et } \lim_{n \to +\infty} u_n v_n = +\infty.$
- 2. $\lim_{n \to +\infty} u_n = 0; \lim_{n \to +\infty} v_n = +\infty$ et $\lim_{n \to +\infty} u_n v_n = 5.$
- 3. $\lim_{n \to +\infty} u_n = +\infty; \lim_{n \to +\infty} v_n = -\infty$ et $\lim_{n \to +\infty} (u_n + v_n) = +\infty.$
- 4. $\lim_{n \to +\infty} u_n = +\infty; \lim_{n \to +\infty} v_n = -\infty$ et $\lim_{n \to +\infty} (u_n + v_n) = 5.$

V

On considère la suite numérique (u_n) définie par : $u_0 = 1$ et pour tout $n \in \mathbb{N}, u_{n+1} = \frac{3 + 2u_n}{2 + u_n}$.

- 1. Calculer les quatre premiers termes de la suite.
- 2. Prouver par récurrence que pour tout $n \in \mathbb{N}$, $u_n \ge 1$.
- 3. Démontrer que la suite est majorée par $\sqrt{3}$.
- 4. Déterminer le sens de variation de la suite (u_n) .
- 5. On considère la suite (v_n) définie par : pour tout $n \in \mathbb{N}$,

$$v_n = \frac{u_n - \sqrt{3}}{u_n + \sqrt{3}}.$$

- (a) Montrer que la suite (ν_n) est une suite géométrique dont on donnera le premier terme et la raison.
- (b) Exprimer v_n , puis u_n , en fonction de n