Exercices de bac sur la fonction ln

I Nouvelle Calédonie mars 2015

Le plan est rapporté à un repère orthogonal $(O; \overrightarrow{i}; \overrightarrow{j})$.

Soit a un nombre réel strictement positif.

On note Δ_a la droite d'équation y = ax et Γ la courbe représentative de la fonction exponentielle dans le repère orthogonal O; \overrightarrow{i} ; \overrightarrow{j} .

Le but de cet exercice est de déterminer le nombre de points d'intersection de Γ et Δ_a suivant les valeurs de a.

Pour cela. on considère la fonction f_a définie pour tout nombre réel x par

$$f_a(x) = e^x - ax$$
.

On admet pour tout réel a que la fonction f_a est dérivable sur l'ensemble $\mathbb R$ des nombres réels.

1. Étude du cas particulier a = 2

La fonction f_2 est donc définie pour tout x réel par $f_2(x) = e^x - 2x$.

- (a) Étudier les variations de la fonction f_2 sur \mathbb{R} et dresser son tableau de variations sur \mathbb{R} (on ne demande pas de déterminer les limites aux bornes de l'ensemble de définition.
- (b) En déduire que Γ et Δ_2 n'ont pas de point d'intersection.

2. Étude du cas général où *a* est un réel strictement positif

- (a) Déterminer les limites de la fonction f_a en $+\infty$ et en $-\infty$.
- (b) Étudier les variations de la fonction f_a sur \mathbb{R} . Montrer alors que le minimum sur \mathbb{R} de la fonction f_a est $a a \ln a$.
- (c) Étudier le signe de $a a \ln a$ suivant les valeurs du nombre réel strictement positif a.
- (d) Déterminer selon les valeurs du réel a le nombre de points communs à Γ et Δ_a .

II Amérique du Nord mai 2013

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{2u_n}.$$

1. On considère l'algorithme suivant :

Variables: n est un entier naturel u est un réel positif

Initialisation: Demander la valeur de nAffecter à u la valeur 1

Traitement: Pour i variant de 1 à n:

| Affecter à u la valeur $\sqrt{2u}$ Fin de Pour

Sortie: Afficher u

- (a) Donner une valeur approchée à 10^{-4} près du résultat qu'affiche cet algorithme lorsque l'on choisit n = 3.
- (b) Que permet de calculer cet algorithme?
- (c) Le tableau ci-dessous donne des valeurs approchées obtenues à l'aide de cet algorithme pour certaines valeurs de n.

	1	-	10	15	20
n	1	э	10	15	20
Valeur affichée	1,4142	1,9571	1,9986	1,9999	1,9999

Quelles conjectures peut-on émettre concernant la suite (u_n) ?

- 2. (a) Démontrer que, pour tout entier naturel n, $0 < u_n \le 2$.
 - (b) Déterminer le sens de variation de la suite (u_n) .
 - (c) Démontrer que la suite (u_n) est convergente. On ne demande pas la valeur de sa limite.
- 3. On considère la suite (v_n) définie, pour tout entier naturel n, par $v_n = \ln u_n \ln 2$.
 - (a) Démontrer que la suite (v_n) est la suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = -\ln 2$
 - (b) Déterminer, pour tout entier naturel n, l'expression de v_n en fonction de n, puis de u_n en fonction de n.
 - (c) Déterminer la limite de la suite (u_n) .
 - (d) Recopier l'algorithme ci-dessous et le compléter par les instructions du traitement et de la sortie, de façon à afficher en sortie la plus petite valeur de n telle que $u_n > 1,999$.

Variables : n est un entier naturel u est un réel
Initialisation : Affecter à n la valeur 0
Affecter à u la valeur 1
Traitement :

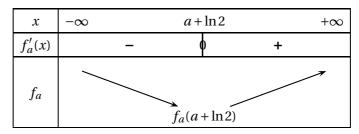
I Nouvelle Calédonie mars 2015

1. f_a est une somme de fonctions dérivables sur $\mathbb R$ donc dérivable sur $\mathbb R$ et on a :

$$\forall x \in \mathbb{R}, f'_a(x) = e^{x-a} - 2$$

$$f'_a(x) > 0 \iff e^{x-a} - 2 > 0 \iff e^{x-a} > 2 \iff x - a > \ln 2 \iff x > a + \ln 2$$

 $f_a'(x)$ s'annule et change de signe pour $x = a + \ln 2$ en étant négatif puis positif donc f_a admet un minimum en $a + \ln 2$ égal à $f_a(a + \ln 2) = e^{a - \ln 2 - a} - 2(a + \ln 2) + e^a = 2 - 2a - 2\ln 2 + e^a$.

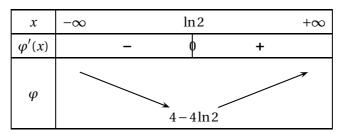


2. En $a + \ln 2$, on a $f_a(a + \ln 2) = 2 - 2a - \ln 2 + e^a$.

Afin de minimiser ce minimum, on étudie les variations de la fonction φ dérivable sur \mathbb{R} et définie par $\varphi(a) = 2 - 2a - \ln 2 + e^a$

$$\varphi'(a) = -2 + e^a; -2 + e^a > 0 \iff e^a > 2 \iff a > \ln 2$$

 $\varphi'(a)$ s'annule et passe de négatif à positif en $a = \ln 2$.



Prendre $a=\ln 2$, minimise donc le minimum de f_a qui est égal à $\varphi(\ln 2)=2-2\ln 2-2\ln 2+\mathrm{e}^{\ln 2}=4-4\ln 2.$

II Amérique du Nord mai 2013

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{2u_n}.$$

1. On considère l'algorithme suivant :

Variables : n est un entier naturel u est un réel positif

Initialisation : Demander la valeur de nAffecter à u la valeur 1

Traitement : Pour i variant de 1 à n :

| Affecter à u la valeur $\sqrt{2u}$ Fin de Pour

Sortie : Afficher u

(a) On a:
$$u_0 = 1$$
, $u_1 = \sqrt{2u_0} = \sqrt{2}$, $u_2 = \sqrt{2u_1} = \sqrt{2\sqrt{2}}$ et $u_3 = \sqrt{2u_2} = \sqrt{2\sqrt{2\sqrt{2}}} = 1.8340$ à 10^{-4} près.

- (b) Cet algorithme permet le calcul du terme de rang *n*.
- (c) D'après le tableau des valeurs approchées obtenues à l'aide de cet algorithme pour certaines valeurs de n, on peut conjecturer que la suite (u_n) est croissante et majorée par 2.

- 2. (a) Démontrons par récurrence que, pour tout entier naturel n, $0 < u_n \le 2$.
 - Initialisation

On a $u_0 = 1$ donc $0 < u_0 \le 2$

• Hérédité

Supposons qu'il existe un entier naturel n tel que $0 < u_n \le 2$.

On a: $0 < u_n \le 2 \Leftrightarrow 0 < 2u_n \le 4 \Leftrightarrow 0 < \sqrt{2u_n} \le 4 \Leftrightarrow 0 < u_{n+1} \le 2$.

Conclusion

 $0 < u_0 \le 2$

Si $0 < u_n \le 2$ alors $0 < u_{n+1} \le 2$.

D'après l'axiome de récurrence on a pour tout entier naturel n, $0 < u_n \le 2$.

(b) Déterminons le sens de variation de la suite (u_n) .

Comme pour tout entier naturel n, $0 < u_n$, comparons $\frac{u_{n+1}}{u_n}$ à 1.

On a:
$$\frac{u_{n+1}}{u_n} = \frac{\sqrt{2u_n}}{u_n} = \sqrt{\frac{2u_n}{u_n^2}} = \sqrt{\frac{2}{u_n}}$$
.

Et comme on a démontré précédemment que $u_n \le 2$, alors $\frac{2}{u_n} \ge 1$ et $\sqrt{\frac{2}{u_n}} \ge 1$.

On en déduit que pour tout entier naturel n, $0 < u_n$, $\frac{u_{n+1}}{u_n} \ge 1$; (u_n) est une suite croissante.

(c) On vient de prouver que d'une part la suite (u_n) est strictement croissante et que d'autre part elle est majorée par 2.

Ceci démontre que la suite (u_n) est convergente.

- 3. On considère la suite (v_n) définie, pour tout entier naturel n, par $v_n = \ln u_n \ln 2$.
 - (a) Pour tout entier naturel n, par $v_n = \ln u_n \ln 2$ donc en particulier :

$$u_0 = \ln(u_0) - \ln 2 = \ln 1 - \ln 2 = -\ln 2$$

On a aussi pour tout entier naturel $n, v_{n+1} = \ln u_{n+1} - \ln 2$, mais $u_{n+1} = \sqrt{2u_n}$.

Alors:
$$v_{n+1} = \ln \sqrt{2u_n} - \ln 2 = \frac{1}{2} (\ln(u_n) + \ln 2) - \ln 2 = \frac{1}{2} (\ln(u_n) - \ln 2) = \frac{1}{2} v_n$$

On peut en conclure que la suite (v_n) est la suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = -\ln 2$.

(b) On déduit de ce qui précède que pour tout entier naturel n, $v_n = -\ln 2\left(\frac{1}{2}\right)^n$.

 $v_n = \ln(u_n) - \ln 2 \Leftrightarrow \ln\left(\frac{u_n}{2}\right) = v_n \Leftrightarrow \frac{u_n}{2} = e^{v_n} \Leftrightarrow u_n = 2e^{v_n}$. u_n en fonction de n.

(c) Comme $\frac{1}{2} \in [0; 1]$, $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ et $\lim_{n \to +\infty} (v_n) = 0$

On sait que $\lim_{x\to 0} (e^x) = 1$, alors par composition des limites : $\lim_{n\to +\infty} (e^{v_n}) = 1$ et finalement : $\lim_{n\to +\infty} (u_n) = 2$

(d) L'algorithme ci-dessous permet d'afficher en sortie la plus petite valeur de n telle que $u_n > 1,999$.

Variables: n est un entier naturel

u est un réel

Initialisation : Affecter à *n* la valeur 0

Affecter à *u* la valeur 1

Traitement: Tant que $u \le 1,999$

Affecter à u la valeur $\sqrt{2u}$

Affecter à n la valeur n + 1

Sortie: Afficher n