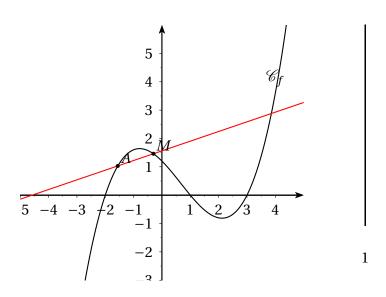
Fonctions numériques : dérivation

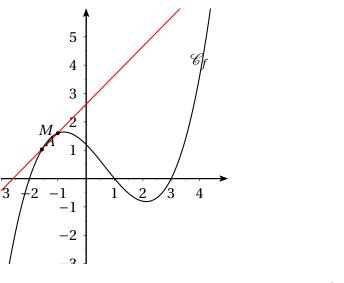
Table des matières

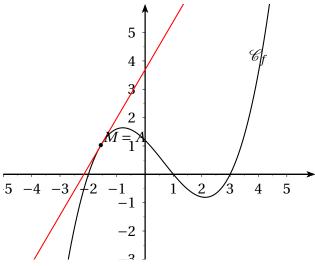
I	Notio	n de tangente à une courbe	1
II	Nomb	ore dérivé de f en a et fonction dérivée :	2
III	Table	au des dérivées usuelles :	4
IV	Dériv	ées et opérations :	5
V		ée de la composée de quelques fonctions :	5
	V.1	Dérivée de $x \mapsto \sqrt{u(x)}$	5
	V.2	Dérivée de $x \mapsto u^n(x), n \in \mathbb{N}^*$	6
	V.3	Dérivée de la fonction $x \mapsto f(ax + b)$	7
	V.4	Dérivée de $\sin u$ et $\cos u$	7
	V.5	Dérivée de $f \circ g$	7
VI	Appli	cation de la dérivabilité :	7
	VI.1	Utilisation du nombre dérivé pour le calcul de certaines limites :	7
	VI.2	Sens de variation d'une fonction :	8
VII	Rappe	els sur les fonctions cosinus et sinus :	9
	VII.1	Radian	9
	VII.2	Cosinus et sinus d'un angle x	10
	VII.3	Dérivée de $cos(u)$ et de $sin(u)$	11
	VII.4	Cercle trigonométrique	12

I Notion de tangente à une courbe

Soit f une fonction définie sur un intervalle I de courbe représentative \mathscr{C}_f et soit A un point fixe de \mathscr{C}_f . Soit M un point variable de \mathscr{C}_f . On trace la droite (AM) qui est sécante à \mathscr{C}_f . On fait tendre M vers A. Si, lorsque M tend vers A, la sécante admet une position limite, on dit que cette limite est tangente à \mathscr{C}_f .







Nombre dérivé de f en a et fonction dérivée :

Définition

Notons a l'abscisse de A et x l'abscisse de M. Le coefficient directeur de la sécante (AM) est : $\frac{f(x)-f(a)}{x-a}$. Dire que la sécante a une position limite qui est la droite tangente à \mathscr{C}_f en A signifie que $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$.

Si ce nombre **existe** et s'il est **fini**, on pose : $\mathbf{f}'(\mathbf{a}) = \lim_{\mathbf{x} \to \mathbf{a}} \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})}{\mathbf{x} - \mathbf{a}}$ et ce nombre est le **nombre dérivé** de f en

On dit alors que f est dérivable en a.

Remarque:

En posant x = a + h, on obtient: $\mathbf{f}'(\mathbf{a}) = \lim_{\mathbf{h} \to \mathbf{0}} \frac{\mathbf{f}(\mathbf{a} + \mathbf{h}) - \mathbf{f}(\mathbf{a})}{\mathbf{h}}$.

Exemple: $f(x) = x^2$.

Pour tout $a \in \mathbb{R}$: $\frac{f(a+h)-f(a)}{h} = \frac{[a+h]^2 - a^2}{h} = \frac{a^2 + 2ah + h^2 - a^2}{h} = \frac{2ah + h^2}{h} = 2a + h$.

Par conséquent : $\lim_{h\to 0} \left(\frac{f(a+h)-f(a)}{h} \right) = 2a$.

f est dérivable en a et f'(a) = 2a

Par définition, f'(a) est le coefficient directeur de la tangente à \mathscr{C}_f en a.

L'équation de la tangente est alors : y = f'(a)(x - a) + f(a).

Démonstration:

Rappel : la droite, de coefficient directeur a et passant par le point M_0 de coordonnées $(x_0; y_0)$ a pour équation $y - y_0 = a(x - x_0)$.

En effet, l'équation est de la forme y = ax + b.

Comme M_0 appartient à cette droite, ses coordonnées vérifient cette équation, donc $y_0 = ax_0 + b$.

Par conséquent : $\begin{cases} y = ax + b \\ y_0 = ax_0 + b \end{cases}$. Par soustraction, on obtient : $y - y_0 = a(x - x_0)$.

Pour la tangente, on obtient donc : $y - y_A = f'(a)(x - x_A)$ qui donne $y = f'(a)(x - x_A) + f(a)$.

f est dérivable sur un intervalle ouvert I si f est dérivable en tout a de I.

Remarque

La dérivée f' de f est elle-même une fonction. Si elle est dérivable, on appelle f'' sa dérivée (dérivée se-

Cette dérivée seconde peut elle-même être dérivable et ainsi de suite. Les dérivées d'ordre n, avec $n \ge 3$, se

Ainsi: f'' = (f')'; $f^{(3)} = (f'')'$ et plus généralement $f^{(n+1)} = (f^{(n)})'$

Exemples:

- 1. Soit $f(x) = 3x^4 + 5x^2 + 2x + 1$. On a: $f'(x) = 12x^3 + 10x + 2$; $f''(x) = 36x^2 + 10$; $f^{(3)}(x) = 72x$: $f^{(4)}(x) = 72$; $f^{(5)}(x) = 0$ et les dérivées suivantes sont toutes égales à la fonction nulle.
- 2. Soit $f(x) = \sin x$. Alors: $f'(x) = \cos x$; $f''(x) = -\sin x$; $f^{(3)}(x) = -\cos x$; $f^{(4)}(x) = \sin x = f(x)$. On retombe sur la fonction
- 3. Imaginons qu'il existe une fonction f définie et dérivable sur \mathbb{R} telle que, f'(x) = f(x). f est-elle dérivable à l'ordre 3 si oui, que vaut $f^{(3)}$?

Réponse : f' = f donc f' est dérivable et f'' = (f')' = f' et de même $f^{(3)} = f$.

On pourrait alors montrer par récurrence, que la fonction f vérifie alors : pour tout n, $f^{(n)} = f$.

On étudiera cette fonction plus en détail dans un prochain chapitre.

Exercices

- Montrer que la fonction $x \mapsto |x|$ n'est pas dérivable en 0.
- Étudier la dérivabilité de la fonction $x \mapsto x|x|$ en 0.

Solutions:

• Soit *f* la fonction $x \mapsto |x|$.

Solve from the contraction
$$x > |x|$$
.

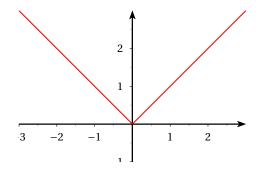
$$\forall x \neq 0, \frac{f(x) - f(0)}{x - 0} = \frac{|x| - 0}{x - 0} = \frac{|x|}{x}.$$
Si $x < 0, \frac{|x|}{x} = \frac{-x}{x} = -1$ et pour $x > 0, \frac{|x|}{x} = \frac{x}{x} = 1$.

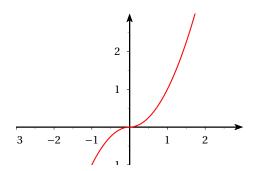
On en déduit que :
$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x < 0}} (-1) = -1$$
, alors que $\lim_{\substack{x \to 0 \\ x > 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x > 0}} (1) = 1$.

La limite à gauche et à droite n'est pas la même, donc la limite en 0 n'existe pas; f n'est pas dérivable en 0 (mais l'est à gauche et à droite); on dit que la courbe admet une demi-tangente à gauche et une demi-tangente à droite.

• Soit $g: x \mapsto x|x|$. Cette fois, on a: $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = \lim_{x\to 0} \frac{x|x|}{x} = \lim_{x\to 0} (|x|) = 0$; la limite existe, donc la fonction g est dérivable en 0 et la courbe représentative de g a une tangente en 0.

Voici les deux représentations graphiques de f et de g.





III Tableau des dérivées usuelles :

Fonction f définie par :	Fonction f' définie par :	Domaine de décidabilité de validité
$f(x) = k \in \mathbb{R}$	f'(x) = 0	\mathbb{R}
$f(x) = x^n (n \in \mathbb{N}^*)$	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \frac{1}{x^n} = x^{-n} \ (n \in \mathbb{N}, \ n \ge 2)$	$f'(x) = -\frac{n}{x^{n+1}} = -nx^{-n-1}$	\mathbb{R}^*
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$]0; +∞[
$f(x) = \cos x$	$f'(x) = -\sin x$	\mathbb{R}
$f(x) = \sin x$	$f'(x) = \cos x$	R

Dérivées et opérations :

Soient *u*, *v* deux fonctions dérivables sur un intervalle *I* et *k* un réel.

•
$$(ku)' = ku'$$

•
$$(u+v)'=u'+v'$$

$$\bullet (uv)' = u'v + uv'$$

•
$$(u+v)' = u' + v'$$

• $(uv)' = u'v + uv'$
• $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}, u(x) \neq 0$

•
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, \ v(x) \neq 0$$

Exemples:

Théorème (admis)

Soit f une fonction définie sur un intervalle ouvert I et dérivable en $a \in I$; alors, f est continue en a

Attention, la réciproque est fausse; une fonction peut être continie en a, mais pas dérivable; exemple, la fonction $x \mapsto |x| \text{ en } 0.$

Dérivée de la composée de quelques fonctions :

Dérivée de $x \mapsto \sqrt{u(x)}$

Propriété

Soit u une fonction définie, positive et dérivable sur un intervalle I., de fonction dérivée u'. La fonction f définie sur I par $f: x \mapsto \sqrt{u(x)}$ est dérivable en tout nombre x tel que $u(x) \neq 0$ et

Démonstration:

Démonstration:

Soit $x \in I$ tel que u(x) > 0. Soit J un intervalle de I contenant I.

Soit h un réel non nul, tel que $x + h \in J$.

Soit
$$A(h) = \frac{\sqrt{u(x+h) - u(x)}}{h}$$
 et on étudie la limite quand h tend vers 0.

$$A(h) = \frac{\left[\sqrt{u(x+h) - \sqrt{u(x)}}\right] \times \left[\sqrt{u(x+h) + \sqrt{u(x)}}\right]}{\left[\sqrt{u(x+h) + \sqrt{u(x)}}\right]} = \frac{u(x+h) - u(x)}{h\left[\sqrt{u(x+h) + \sqrt{u(x)}}\right]} \text{ (avec } \sqrt{u(x+h) + \sqrt{u(x)}} > 0\text{).}$$

Or,
$$\lim_{h\to 0} \left(\frac{u(x+h)-u(x)}{h}\right) = u'(x)$$
; $\lim_{h\to 0} u(x+h) = u(x)$ par continuité de u donc $\lim_{h\to 0} \left[\sqrt{u(x+h)} + \sqrt{u(x)}\right] = 2\sqrt{x}$.

On en déduit que $\lim_{h\to 0} A(h) = \frac{u'(x)}{2\sqrt{u(x)}}$ cqfd.

Exemple:
$$f(x) = \sqrt{3x^2 + 5x + 7}$$
 définie sur \mathbb{R} .

$$f(x) = \sqrt{u(x)}$$
 avec $u(x) = 3x^2 + 5x + 7$ et $u'(x) = 6x + 5$.

Alors:
$$f'(x) = \frac{6x+5}{2\sqrt{3x^2+5x+7}}$$

V.2 Dérivée de $x \mapsto u^n(x), n \in \mathbb{N}^*$

Soit u une fonction définie et dérivable sur un intervalle I. Soit u' sa fonction dérivée, et soit n un entier

La fonction u^n est dérivable et $(u^n)' = nu' \times u^{n-1}$.

Démonstration Soit $A(h) = \frac{u^n(x+h) - u^n(x)}{h}$. On doit étudier la limite de A(h) quad h tend vers 0.

Cela signifie que
$$\lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = nx^{n-1}$$

On a vu en première que la fonction
$$f: x \mapsto x^n$$
 est dérivable et que $f'(x) = nx^{n-1}$.

Cela signifie que $\lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = nx^{n-1}$.

En changeant de lettre, on a : $\lim_{k \to 0} \frac{(z+k)^n - z^n}{k} = nz^{n-1}$.

Posons $\varepsilon(k) = \frac{(z+k)^n - z^n}{k} - nz^{n-1}$. On a $\lim_{x \to 0} \varepsilon(k) = 0$.

On obtient, après transformation:

$$\frac{(z+k)^n - z^n}{k} = nz^{n-1} + \varepsilon(k) \operatorname{donc} (z+k)^n - z^n = (nz^{n-1} + \varepsilon(k)) \times k$$

On pose alors u(x) = z et u(x + h) = z + k.

$$u^{n}(x+h) - u^{n}(x) = (z+k)^{n} - z^{n} = (nz^{n-1} + \varepsilon(k)) \times k = (nu^{n-1}(x) + \varepsilon(u(x+h) - u(x))) \times (u(x+h) - u(x)).$$

On en déduit :

On a:
$$\lim_{h \to 0} \left(\frac{u(x+h) - u(x)}{h} \right) = \left(nu^{n-1}(x) + \varepsilon \left(u(x+h) - u(x) \right) \right) \times \frac{u(x+h) - u(x)}{h}$$

Use the detail.

$$\frac{u^n(x+h) - u^n(x)}{h} = \left(nu^{n-1}(x) + \varepsilon \left(u(x+h) - u(x) \right) \right) \times \frac{u(x+h) - u(x)}{h}$$

On a: $\lim_{h \to 0} \left(\frac{u(x+h) - u(x)}{h} \right) = u'(x)$ car la fonction u est dérivable.

La fonction u est continue, donc $\lim_{h\to 0} u(x+h) = u(x)$ donc $\lim_{h\to 0} [u(x+h) - u(x)] = 0$.

Alors:
$$\lim_{h\to 0} \varepsilon (u(x+h) - u(x)) = \lim_{k\to 0} \varepsilon(k) = 0$$
 en posant $k = u(x+h) - u(x)$.
Par conséquent: $\lim_{h\to 0} \left(nu^{n-1}(x) + \varepsilon (u(x+h) - u(x))\right) = nu^{n-1}(x)$.
Alors: $\lim_{h\to 0} \left(\frac{u^n(x+h) - u^n(x)}{h}\right) = nu^{n-1}(x) \times u'(x)$.

Exemples:

1. Soit $f: x \mapsto (3x^2 + 5x - 7)^5$; $f = u^5$ avec $u(x) = (3x^2 + 5x - 7)^5$. On a alors $f' = (u^7)' = 7u'u^{7-1} = 7u'u^6$ avec u'(x) = 6x + 5.

Par conséquent :
$$f'(x) = 7(6x+5)(3x^2+5x-7)^6$$
.

2. Soit $f: x \mapsto \frac{1}{(x^2 + x + 1)^5}$ sur \mathbb{R} .

On a
$$f(x) = (x^2 + x + 1)^{-5}$$
 donc $f = u^{-5}$ avec
$$\begin{cases} n = -5 \\ u(x) = x^2 + x + 1 \end{cases}.$$

$$f' = nu'u^{n-1} = -5u'u^{-6} = -\frac{5u'}{u^6} \text{ avec } u'(x) = 2x + 1.$$
Par conséquent : $f'(x) = -\frac{5(2x+1)}{(x^2 + x + 1)^6}$

V.3 Dérivée de la fonction $x \mapsto f(ax + b)$

Soient f une fonction définie sur \mathbb{R} et deux nombres a et b.

La fonction $g: x \mapsto f(ax+b)$ est dérivable sur \mathbb{R} et a pour dérivée $g'x \mapsto a \times f'(ax+b)$.

$$\frac{g(x+h) - g(x)}{h} = \frac{f(a(x+h) + b) - f(ax+b)}{h} = \frac{f(ax+b+ah) - f(x)}{h} = a \times \frac{f(ax+b+ah) - f(x)}{ah}.$$
Or: $\lim_{h \to 0} \left(\frac{f(ax+b+ah) - f(x)}{ah} \right) = \lim_{k \to 0} \frac{f(ax+b+k) - f(ax+b)}{k} = f'(ax+b).$
On en déduit: $\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \frac{a \times f'(ax+b)}{h}.$

Exemple: Soit $f: x \mapsto \cos(2x+3)$; $f'(x) = 2\cos'(2x+3) = \boxed{-2\sin(2x+3)}$

V.4 Dérivée de $\sin u$ **et** $\cos u$

Propriété admise : si *u* est dérivable, sin *u* est dérivable et cos *u* est dérivable.

- $(\sin u)' = u' \times \sin' u = u' \cos u$
- $(\cos u)' = u' \times \cos' u = -u' \sin u$

Exemple : soit $f(x) = \sin(x^2)$.

 $f = \sin u$ avec $u(x) = x^2$.

 $f' = u' \cos u$ avec u'(x)2x donc $f'(x) = 2x \cos(x^2)$

V.5 Dérivée de $f \circ g$

Soit g une fonction définie et dérivable sur un intervalle I et à valeurs dans J et f une fonction définie et dérivable sur J.

Alors $f \circ g$ est dérivable et $(f \circ g)' = g' \times (f' \circ g)$.

Pour tout $x \in I$, $(f \circ g)'(x) = g'(x) \times f'(g(x))$.

Application de la dérivabilité :

Utilisation du nombre dérivé pour le calcul de certaines limites :

On sait que si f est dérivable en a, alors $\lim_{x \to a} \frac{f(x) - f(a)}{x} = f'(a)$.

Exemple: $\frac{\sin x}{x} = \frac{\sin x - \sin 0}{x - 0}$ donc $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \sin'(0) = \cos 0 = 1$.

VI.2 Sens de variation d'une fonction :

Théorème (admis

Soit *f* une fonction dérivable sur un intervalle *I*.

Si f' = 0 sur I, alors f est constante sur I.

Si f' est strictement positive sur I sauf éventuellement pour un certain nombre fini de valeurs o $\check{}$ elle s'annule, alors f est croissante sur I.

Si f' est strictement négative sur I sauf éventuellement pour un certain nombre fini de valeurs o $\check{}$ elle s'annule, alors f est décroissante sur I.

Exemple:

Soit f la fonction définie par : $f(x) = x^3$ définie sur \mathbb{R} .

 $f'(x) = 3x^2 \ge 0$ et f'(x) = 0 pour x = 0.

On en déduit que la fonction f est strictement croissante sur \mathbb{R} .

Exemple:

- 1. Étudier le sens de variation de la fonction f définie sur \mathbb{R} par : $f(x) = 2\cos x 2 + x^2$.
- 2. En déduire la comparaison des fonctions $x \mapsto \cos x$ et $x \mapsto 1 \frac{x^2}{2}$.

Solution:

- 1. f est dérivable sur \mathbb{R} et $f'(x) = -2\sin x + 2x$. Pour étudier le signe de f'(x), dérivons f'. $f''(x) = -2\cos x + 2 = 2(1 \cos x) \ge 0$. f' est croissante sur \mathbb{R} et comme f'(0) = 0, on en déduit le signe de f'. On en déduit que f est décroissante sur $[0, +\infty)$.
- 2. Le minimum f(0) vaut 0, donc : $\forall x \in \mathbb{R}$, $\cos x \ge 1 \frac{x^2}{2}$.

VII Rappels sur les fonctions cosinus et sinus :

VII.1 Radian

On appelle cercle trigonométrique le cercle de centre O et de rayon 1 unité.

Soit $\mathscr C$ un cercle trigonométrique, muni d'un repère orthonormal $(O; \overrightarrow{i}; \overrightarrow{j})$.

Soit A le point tel que $\overrightarrow{i} = \overrightarrow{OA}$ et \mathscr{D} la droite tangente au cercle \mathscr{C} passant par \mathscr{D} .

Soit I le point de la droite \mathcal{D} tel que AI = 1 (I au-dessus de A). On définit ainsi un repère sur \mathcal{D} .

On enroule la droite \mathscr{D} autour du cercle \mathscr{C} , la demi-droite supérieure s'enroulant dans le sens inverse de rotation des aiguilles d'une montre, qu'on appelle aussi **sens direct** ou sens **trigonométrique**. Soit M un point quelconque de \mathscr{D} ; il vient se placer après enroulement en M'.

La longueur du segment [AM] sur \mathscr{D} est alors égale à longueur de l'arc de cercle $\widehat{AM'}$

Si AM = x, la longueur de l'arc de cercle $\widehat{AM'}$ mesure aussi x unités et l'angle au centre correspondant \widehat{AOM} mesure x radians.

1 radian est donc la mesure de l'angle au centre d'un arc de cercle de longueur 1 unité.

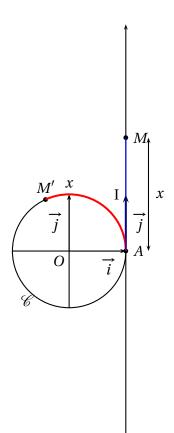
Remarque : quand on fait un tour de cercle complet de longueur 2π (périmètre du cercle), l'angle au centre correspondant mesure donc 2π radians.

Par conséquent, on a la correspondance : $360^{\circ} = 2\pi$ radians.

Angle en °	0°	30deg	45°	60°	90°
Angle en radians	0 rad	$\frac{\pi}{6}$ rad	$\frac{\pi}{4}$ rad	$\frac{\pi}{3}$ rad	$\frac{\pi}{2}$ rad

Remarques:

- la droite ${\mathscr D}$ étant illimitée, quand on l'enroule autour du cercle, elle décrit une infinité de tours de cercle.
- Tous les points de \mathscr{D} espacés d'une longueur égale à 2π se retrouvent au même endroit sur le cercle trigonométrique; à un même point du cercle trigonométrique correspond donc une infinité d'angles, deux mesures consécutives différant de 2π radians.



VII.2 Cosinus et sinus d'un angle x

Soit M un point du cercle trigonométrique muni d'un repère orthonormal $O; \overrightarrow{i}; \overrightarrow{j}$ et soit x une mesure en radians de l'angle \widehat{AOM} .

On appelle cosinus de x et sinus de x les coordonnées du point M dans le repère $\left(O; \overrightarrow{i}; \overrightarrow{j}\right)$. On note : $M(\cos(x); \sin(x))$

Remarques:

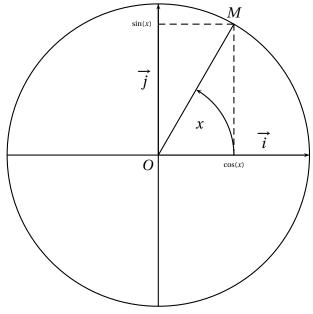
 $\mathfrak z$ chaque point M du cercle correspondent plusieurs angles; en effet, quand on enroule la droite $\mathscr D$ autour du cercle $\mathscr C$, des points viennent se superposer, espacés d'une longueur sur la droite de 2π ; les angles diffèrent donc de 2π .

Si x est une mesure de l'angle en radians, $x+2\pi$ aussi et plus généralement $x+2k\pi$, $k\in\mathbb{Z}$.

On écrit souvent $\cos x$ et $\sin x$ à la place de $\cos(x)$ et $\sin(x)$.

On a donc $cos(x + 2\pi) = cos x$ et $sin(x + 2\pi) = sin x$ pour tout x réel.

On dit que les fonctions cos et sin sont périodiques, de période 2π .





VII.3 Dérivée de cos(u) et de sin(u)

On a: $(\cos(u))' = -u'\sin(u)$ et $(\sin(u))' = u'\cos(u)$.

Exemples:

- 1. $f(x) = \cos(2x+3)$; $f = \cos(u)$ avec u(x) = 2x+3. $f' = -u'\sin(u)$ avec u'(x) = 2 donc $f'(x) = -2\sin(2x+3)$.
- 2. $f(x) = \sin(x^2)$; $f = \sin(u)$ avec $u(x) = x^2$. $f' = u'\cos(u)$ avec $u'(x) = 2x \operatorname{donc} f'(x) = 2x \cos(x^2)$.

