TS: correction du contrôle (récurrence et suites)

I (3 points)

Montrons par récurrence sur n que, pour tout $n \in \mathbb{N}$, $4^n - 1$ est divisible par 3.

Soit \mathscr{P}_n la proposition : « $4^n - 1 = 3k_n, k_n \in \mathbb{Z}$ »

- Initialisation: pour n = 0: $4^9 1 = 1 1 = 0$ qui est divisible par $3 (0 = 3 \times 0)$.
- **Hérédité**: on suppose \mathscr{P}_n vraie pour un tang n quelconque, donc $4^n 1 = 3k_n$, $k_n \in \mathbb{Z}$.

Alors: $4^{n+1} - 1 = 4 \times 4^n - 1 = 4(3k_n + 1) - 1 = 4 \times 3k_n + 4 - 1 = 4 \times 3k_n + 3 = 3(4k_n + 1) = 3k_{n+1}$ en posant $k_{n+1} = 3k_n + 1 \in \mathbb{Z}$. On obtient bien un multiple de 3.

a propriété est héréditaire.

Conclusion: d'après l'axiome de récurrence, la propriété est vraie pour tout $n \in \mathbb{N}$.

II (3 points)

On donne la suite (t_n) définie pour tout entier naturel n, par : $\begin{cases} t_0 = 0 \\ t_{n+1} = t_n + \frac{1}{(n+1)(n+2)} \end{cases}$ montrons par récurrence que, pour tout naturel n, on a : $t_n = \frac{1}{n}$

Démontrons par récurrence que, pour tout naturel n, on a : $t_n = -\frac{1}{2}$

- Initialisation : Pour n = 0, $\frac{n}{n+1} = 0 = u_0$ donc la propriété est vraie pour n = 0.
- **Hérédité**: on suppose la propriété vraie pour un tang n quelconque, donc $t_n = \frac{n}{n+1}$.

Alors:
$$t_n + 1 = t_n + \frac{1}{(+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2 + 2n + 1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}$$
 (ensimplifiant par $n+1$).

La propriété est héréditaire

Conclusion: D'après l'axiome de récurrence, la propriété est vraie pour tout $n \in \mathbb{N}$.

III (Bac S métropole juin 2009 4 points)

On considère la suite (w_n) dont les termes vérifient, pour tout $n \ge 1$: $nw_n = (n+1)w_{n-1} + 1$.

Ce tableau donne les dix premiers termes de la suite :

w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9
1	3	5	7	9	11	13	15	17	19

1. D'après la relation de récurernce, on a :

$$10 w_{10} = (10+1) w_{10-1} + 1$$

$$10 w_{10} = 11 w_9 + 1$$

$$w_{10} = \frac{1}{10} ((11 \times 19) + 1) = \boxed{21}$$

la suite w_n semble être la suite des nombres impairs et donc $w_n = 2n + 1$ avec $w_0 = 1$.

Montrons le par recurrence

Soit
$$P_n$$
 : « $w_n = 2n + 1$ »

- Initialisation: P_0 : « $w_0 = 2 \times 0 + 1$ » est vraie car $w_0 = 1$
- Hérédité: supposons P_n est vraie et montrons qu'alors P_n l'est aussi on a

$$w_n = 2n + 1$$

$$(n+2) w_n = (n+2)(2n+1)$$

$$(n+2) w_n + 1 = (n+2)(2n+1) + 1$$

$$(n+2) w_n + 1 = (n+2)(2n+1) + 1$$

$$(n+1) w_{n+1} = 2n^2 + 5n + 3 = (2n+3)(n+1)$$

$$w_{n+1} = \boxed{(2n+3)^2}$$

ce qui montre P_{n+1} vraie

D'après l'axiome de récurrence, on a bien : $\forall n \in \mathbb{N}, w_n = 2n + 1$

IV (5 points)

On considère la suite (u_n) définie par $u_0=1$ et pour tout entier naturel n, $u_{n+1}=u_n+2n+3$.

- 1. Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = 2n + 3 \ge 0$ donc la suite (u_n) est croissante.
- 2. Démontrons par récurrence que pour tout entier naturel n, $u_n > n^2$.
 - **Initialisation**: pour n = 0, $u_0 = 1$ et $n^2 = 0^2 = 0$ donc $u_0 > 0^2$.

• **Hérédité**: on suppose la propriété vraie à un rang n quelconque, donc $u_n > n^2$. Alors: $u_{n+1} = u_n + 2n + 2 > n^2 + 2n + 3 = n^2 + 2n + 1 + 2 = (n+1)^2 + 2)$ donc $u_{n+1} > (n+1)^2$. La propriété est héréditaire

F'après l'axiome de récurrence, la propriété est vraie pour tout n.

3. C'est du cours!

Soit A > 0 un nombre quelconque. Soit p un entier supérieur à \sqrt{A} .

Pour tout $n \ge p$, $n^2 \ge p^2 \ge \sqrt{A^2} = A$ (croissance de la fonction carré sur $[0; = \infty[)]$ donc $n^2 > A$. On en déduit que la suite n'est pas majorée.

- 4. La suite (u_n) est croissante et non majorée, donc $\lim_{n \to +\infty} u_n = +\infty$
- 5. $u_1 = u_{0+1} = u_0 + 2 \times 0 + 3 = 1 + 3 = \boxed{4}$ $u_2 = \underline{u_{1+1}} = u_1 + 2 \times 1 + 3 = \boxed{9}$ $u_3 = \boxed{16}$; $u_4 = \boxed{25}$
- 6. On conjecture que $u_n = (n+1)^2$.
- 7. Effectuons une démonstration par récurrence :
 - **Initialisation**: pour n = 0, $(n + 1)^2 = 1^2 = 1 = u_0$ donc c'est vrai our n = 0.
 - **Hérédité**: on suppose que c'est vrai pour un rang n quelconque, donc $u_n = (n+1)^2$. Alors: $u_{n+1} = u_n + 2n + 3 = n^2 + 2n + 1 + 2n + 4 = n^2 + 4n + 4 = (n+2)^2$ c.q.f.d.

Conclusion: d'après l'axiome de récurrence, la propriété est vraie pour tout $n \in \mathbb{N}$, donc $u_n = (n+1)^3$.

V (5 points)

On considère la suite définie par $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{2}{1 + u_n} \text{ pour tout } n \in \mathbb{N} \end{cases}.$

On admet que, pour tout $n \in \mathbb{N}$, $0 \le u$

1. Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{u_n - 1}{u_{n+2}}$

$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 2} = \frac{\frac{2}{1 + u_n} - 1}{\frac{2}{1 + u_n} + 2} \frac{\frac{2 - (1 + u_n)}{1 + u_n}}{\frac{2}{1 + u_n} + 2} = \frac{\frac{1 - u_n}{1 + u_n}}{\frac{2 + 2 + 2u_n}{1 + u_n}} = \frac{1 - u_n}{4 + 2u_n} 1 + u_n = \frac{1 - u_n}{2(u_n + 2)} = -\frac{1}{2} \times \frac{u_n - 1}{u_n + 2} = \boxed{-\frac{1}{2}v_n}$$

- 2. $\forall n \in \mathbb{N}, v_n = v_0 q^n = \left| \frac{2}{5} \times \left(-\frac{1}{2} \right)^n \right|$
- 3. $v_n = \frac{u_n 1}{u_n + 2} \Leftrightarrow v_n(u_n + 2) = u_n 1 \Leftrightarrow u_n v_n + 2v_n = u_n 1 \Leftrightarrow u_n v_n u_n = -2v_n 1 \Leftrightarrow u_n(v_n 1) = -2v_n 1 \Leftrightarrow \frac{u_n 1}{u_n + 2} \Leftrightarrow \frac{u_n 1}{u_n$

$$\forall n \in \mathbb{N}: u_n = \frac{-2 \times \frac{2}{5} \times \left(-\frac{1}{2}\right)^n - 1}{\frac{2}{5} \times \left(-\frac{1}{2}\right)^n - 1}$$