I

Calculer la dérivée des fonctions suivantes, pour $x \in \mathcal{D}$:

1.
$$f(x) = x^5 + \frac{1}{2}x^4 - 2x^3 + 5x - 1$$
, $\mathcal{D} = \mathbb{R}$

2.
$$f(x) = (3x - 1)\sqrt{x}$$
, $\mathcal{D} =]0; +\infty[$

3.
$$f(x) = \frac{x^2 + x + 1}{x + 2}$$
, $\mathcal{D} = \mathbb{R} \setminus \{-2\}$

4.
$$f(x) = \frac{1}{3x^2 + 5}, \mathcal{D} = \mathbb{R}$$

II

Déterminer la dérivée des fonctions suivantes :

$$f_1(x) = \left(\frac{3x-4}{x-1}\right)^5 \operatorname{sur} \mathbb{R} \setminus \{1\}$$

$$f_2(x) = \sin(\pi x^2 + 1) \operatorname{sur} \mathbb{R}$$

$$f_3(x) = \cos\left(\frac{\pi}{x}\right) \operatorname{sur} \mathbb{R}^*$$

$$f_4(x) = \sqrt{\frac{x^3}{x-1}} \sup]1; +\infty[$$

III

Soient les fonctions f et g définies sur] $-\infty$; 0[par : $f(x) = x^2 - x$ et $g(x) = \frac{3}{x}$. Démontrez que les courbes \mathcal{C}_f et \mathcal{C}_g admettent des

tangentes parallèles au point d'abscisse -1.

IV

Soit $f: x \mapsto \frac{1}{x}$, définie sur \mathbb{R}^* . On note f' la fonction dérivée de f, f'' la dérivée de f'(f'' = (f')'), $f^{(3)}$ la dérivée de f'' et plus généralement $f^{(n)}$ la dérivée de $f^{(n-1)}$

- 1. Calculer f'(x), f''(x), $f^{(3)}(x)$, $f^{(4)}(x)$.
- 2. Conjecturer alors l'expression de $f^{(n)}(x)$ en
- 3. La démontrer.