Exercice sur les nombres complexes

I

- 1. Quelle est la partie réelle du nombre complexe $z = (2 + i)^2$?
- 2. Quelle est la partie imaginaire du nombre complexe $z = (1 i)^2$?
- 3. Calculer le module du nombre complexe z = 4 + 3i.
- 4. Calculer un argument du nombre complexe z = 2 2i.
- 5. Si z = 2 5i alors que vaut \overline{z} ?
- 6. Soit z le nombre complexe de module 2 et d'argument $\frac{\pi}{3}$. Donner la forme algébrique de z.

II Amérique du sud novembre 2009

Dans le plan muni d'un repère orthonormé $(O; \vec{u}; \vec{v})$, on considère les points A et B d'affixes respectives 2 et (-2) et on définit l'application f qui à tout point M d'affixe z et différent de A associe le point M' d'affixe

$$z' = \frac{\overline{z}(z-2)}{\overline{z}-2}.$$

- 1. (a) Déterminer l'affixe du point P' image par f du point P d'affixe (1 + i).
 - (b) Montrer que les droites (AP) et (BP') sont parallèles.
 - (c) Établir que les droites (AP) et (PP') sont perpendiculaires.
- 2. Déterminer l'ensemble des points invariants par f (c'est-à-dire l'ensemble des points tels que M'=M).

On cherche à généraliser les propriétés ${\bf 1.b}$ et ${\bf 1.c}$ pour obtenir une construction de l'image M' d'un point M quelconque du plan.

- 3. (a) Montrer que pour tout nombre complexe z, le nombre $(z-2)(\overline{z}-2)$ est réel.
 - (b) En déduire que pour tout nombre complexe distinct de 2, $\frac{z'+2}{z-2}$ est réel.
 - (c) Montrer que les droites (AM) et (BM') sont parallèles.
- 4. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, sera prise en compte dans l'évaluation.

Soit *M* un point quelconque non situé sur la droite (AB). Généraliser les résultats de la question **1.c**.

5. Soit M un point distinct de A. Déduire des questions précédentes une construction du point M' image de M par f. Réaliser une figure pour le point Q d'affixe 3-2i.

Correction du II

Amérique du sud novembre 2009

1. **a.**
$$z_{P'} = \frac{\overline{1+i}(1+i-2)}{\overline{1+i}-2} = \frac{(1-i)(-1+i)}{-1-i} = \frac{(1-i)(1-i)}{1+i} = \frac{-2i}{1+i} = \frac{-2i(1-i)}{(1+i)(1-i)} = \frac{-2-2i}{2} = -1-i.$$
Donc $z_{P'} = -z_P$.

- **b.** $\overrightarrow{AP}(-1; 1)$ et $\overrightarrow{BP}'(-1; 1)$. Les vecteurs sont égaux donc les droites (AP) et (BP') sont parallèles. On peut même dire que $\overrightarrow{AP} = \overrightarrow{BP}' \iff (APP'B)$ est un parallélogramme.
- **c.** $\overrightarrow{AP}(-1; 1)$ et $\overrightarrow{PP'}(-2; -2)$. Donc $\overrightarrow{AP} \cdot \overrightarrow{PP'} = (-1) \times (-2) + 1 \times (-2) = 0 \iff \overrightarrow{AP}(-1; 1)$ et $\overrightarrow{PP'}$ sont orthogonaux ou encore les droites (AP) et (PP') sont perpendiculaires.
- **2.** Pour M(z) avec $z \neq 2$, donc avec $\overline{z} \neq \check{D}2$, $M'(z') = M(z) \iff z' = \frac{\overline{z}(z-2)}{\overline{z}-2} = z \iff \overline{z}(z-2) = z(\overline{z}-2) \iff z\overline{z}-2\overline{z}=z\overline{z}-2z \iff -2\overline{z}=-2z \iff \overline{z}=z \iff z \in \mathbb{R}.$

L'ensemble des points invariants par f est l'axe des abscisses privé du point A.

3. a. $(z-2)(\overline{z}-2) = (z-2)(\overline{z}-\overline{2}) = (z-2)(\overline{z}-2) = |z-2|^2 \in \mathbb{R}^+$ (carré du module de z-2, soit AM^2 .)

b.
$$\frac{z'+2}{z-2} = \frac{\overline{z}(z-2)}{\overline{z}-2} + 2 = \frac{\overline{z}(z-2) + 2\left(\overline{z}-2\right)}{\overline{z}-2} = \frac{z\overline{z}-2\overline{z}+2\overline{z}-4}{(z-2)\left(\overline{z}-2\right)} = \frac{z\overline{z}-4}{(z-2)\left(\overline{z}-2\right)}.$$

Or $z\overline{z} = |z|^2 \in \mathbb{R}$ et dans la question précédente on a vu que $(z-2)(\overline{z}-2) = |z-2|^2 \in \mathbb{R}$. Le dernier quotient est donc réel.

c. Le dernier résultat peut s'écrire $\frac{z'-z_{\rm B}}{z-z_{\rm A}} \in \mathbb{R} \iff \left(\overrightarrow{\rm AM}, \overrightarrow{\rm BM'}\right) = 0 + k\pi$ (argument d'un réel).

Conclusion : les vecteurs \overrightarrow{AM} et $\overrightarrow{BM'}$ sont colinéaires donc les droites (AM) et (BM') sont parallèles.

4. On a
$$z_{\overrightarrow{AM}} = x - 2 + iy$$
 et $z_{\overrightarrow{MM'}} = z' - z = \frac{\overline{z}(z-2)}{\overline{z}-2} - z = \frac{\overline{z}(z-2) - z(\overline{z}-2)}{\overline{z}-2} = \frac{z\overline{z} - 2\overline{z} - z\overline{z} + 2z}{\overline{z}-2} = \frac{2(z-\overline{z})}{\overline{z}-2} = \frac{2(z-\overline{z})}{\overline{z}-2}$

Les vecteurs \overrightarrow{AM} et $\overrightarrow{MM'}$ sont orthogonaux, donc les droites (AM) et (MM') sont perpendiculaires.

- 5. La construction de l'image de M se déduit des questions précédentes :
 - Tracer la parallèle (d_1) à (AM) contenant B;
 - Tracer la perpendiculaire (d_2) à la droite (AM) contenant M
 - L'intersection de (d_1) et (d_2) est le point M'.