Soit l'inéquation
$$\frac{2x+3}{x+5} \ge \frac{-5x-2}{x-1}$$
.

L'ensemble de définition est $\mathscr{D} = \mathbb{R} \setminus \{5; 1\}$

On suppose que $x \in \mathcal{D}$.

Alors
$$\frac{2x+3}{x+5} \ge \frac{-5x-2}{x-1} \Leftrightarrow \frac{2x+3}{x+5} - \frac{-5x-2}{x-1} \ge 0$$

$$\Leftrightarrow \frac{(2x+3)(x-1) - (x+5)(-5x-2)}{(x+5)(x-1)} \ge 0$$

$$\Leftrightarrow \frac{(2x+3)(x-1) + (x+5)(5x+2)}{(x+5)(x-1)} \ge 0$$

$$\Leftrightarrow \frac{[2x^2 - 2x + 3x)3] + [5x^2 + 2x + 25x + 10]}{(x+5)(x-1)} \ge 0$$

$$\Leftrightarrow \frac{7x^2 + 28x + 7}{(x+5)(x-1)} \ge 0 \Leftrightarrow \frac{7(x^2 + 4x + 1)}{(x+5)(x-1)} \ge 0 \Leftrightarrow \frac{x^2 + 4x + 1}{(x+5)(x-1)} \ge 0.$$
(après simplification par 7)

On étudie le signe du numérateur et celui du dénominateur.

On étudie le signe du numérateur et celui du dénominateur. Signe de $x^2 + 4x + 1$: $\Delta = 12 > 0$; l'expression a deux racines :

$$x_1 = \frac{-4 - \sqrt{12}}{2} = \frac{-4 - 2\sqrt{3}}{2} = \frac{2(-2 - \sqrt{3})}{2} = -2 - \sqrt{3}$$
 et

Le coefficient de x^2 est 1, positif, donc l'expression est positive à l'extérieur de l'intervalle formé par les racines.

Signe du dénominateur (x+5)(x-1). les deux racines sont -5 et 1; le coefficient de x^2 est 1, donc positif. L'expression est positive à l'extérieur de l'intervalle formé par les racines.

On renseigne alors un tableau de signes :

x	$-\infty$ -	5 -2-	$-\sqrt{3}$ -	2+	3 1	$+\infty$
$x^2 + 4x + 1$	+	- () –	0	- +	-
(x+5)(x-1)	+	- () +	0	- +	-
Quotient	+	- () +	0	- +	-

L'ensemble des solutions de l'inéquation est finalement :

$$\mathcal{S} =]-\infty$$
; $-5[\cup[-2-\sqrt{3}; -2+\sqrt{3}]\cup[1; +\infty[$

II

- 1. On suppose (u_n) arithmétique : le terme général est de la forme $u_0 + nr$ donc de la forme an + b avec a = r et $b = u_0$.
 - Réciproquement : on suppose que $u_n = an + b$: pour tout n;, $u_{n+1} u_n = a$ donc la suite (u_n) est arithmétique.

Conclusion:

les suites arithmétiques sont les suites dont l'expression est une fonction affine de n

- 2. On suppose (u_n) géométrique : le terre général est de la forme $u_0 q^n$ donc de la forme aq^n avec $a = u_0$.
 - Réciproquement : on suppose que $u_n = aq^n$: pour tout n;, $u_{n+1} = qu_n$ donc la suite (u_n) est géométrique.

Conclusion:

les suites géométrique sont les suites dont l'expression est de la forme aq^n

Ш

Soit la suite
$$(u_n)$$
 définie par :
$$\begin{cases} u_0 = \frac{3}{2} \\ u_{n+1} = \frac{1}{1 + u_n} \end{cases}$$

Démontreonpar récurrence que, pour tout n, u_n est un nombre rationnel.

Soit \mathscr{P}_n la proposition : $u_n = \frac{a_n}{b_n}$ avec a_n et b_n eniers naturels, $b_n \neq 0$.

- Initialisation : $u_0 = \frac{3}{2} \in \mathbb{Q}$. La proposition est vraie au rang n = 0.
- **Hérédité** On suppose la proposition vraie à un rang n quelconque. IL existe a_n et b, entiers naturels tels que $u_n = \frac{a_n}{b_n}$.

$$u_{n+1} = \frac{1}{1+u_n} = \frac{1}{1+\frac{a_n}{b_n}} = \frac{1}{\frac{a_n+b_n}{b_n}} = \frac{b_n}{a!n+b_n}.$$

On pose $a_{n+1} = bn \in \mathbb{N}$ et $b_{n+1} = a_n + b_n \in \mathbb{N}$ avec $b_{n+1} \ge b_n \ne 0$.

La propriété est héréditaire.

La propriété est donc vraie pour tout n, d'près l'axiome de récurrence.

On a
$$a_0 = 3$$
, $b_0 = 2$,
$$\begin{cases} a_{n+1} = b_n \\ a_{n+1} = a_n + b_n \end{cases}$$
.

IV

La suite de Fibonacci est définie par : $F_1 = F_2 = 1$ et $F_{n+2} = F_n + F_{n+1}$.

Démontrons par récurrence que, pour tout $n \in \mathbb{N}^*$, $F_1^2 + F_2^2 + \dots + F_n^2 = F_n \times F_{n+1}$.

- Initialisation : $F_1 \times F_2 = 1 \times 1 = 1$ et $F_1^2 = 1^2 = 1$ donc $F_1^2 = F_1 \times F_2$. La propriété est vraie au rang 1.
- **Hérédité** On suppose la propriété vraie au rang n, donc : $F_1^2 + F_2^2 + \dots + F_n^2 = F_n \times F_{n+1}$. Alors : $F_1^2 + F_2^2 + \dots + F_n^2 + F_{n+1}^2 = [F_1^2 + F_2^2 + \dots + F_n^2] + F_{n+1}^2$ $= F_n \times F_{n+1} + F_{n+1}^2 = F_{n+1} [F_n + F_{n+1}] = F_{n+1} \times F_{n+2}$ car $F_n + F_{n+1} = F_{n+2}$.

La propriété est vraie au rang n + 1.

D'après l'axiome de récurrence, la propriété est vraie pour tout

Remarque: on peut montrer, par exemple par une méthode analogue à celle utilisée dans un TD précédent où nous avons cherché deux réels a et b tels que a+b=4 et ab=1, que pour tout n:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

V

Héléne a acheté une voiture d'occasion à 3 500 € le 1^{er} janvier 2006.

Une étude statistique montre que si u_n et u_{n+1} sont les valeurs de cette automobile le 1^{er} janvier respectivement de la n-iéme année et de la (n+1)-iéme qui suivent l'achat, alors :

$$u_{n+1} = 0,7u_n + 210.$$

On pose $u_0 = 3500$.

- 1. On a $u_1 = 2660$ et $u_2 = 2072$.
- 2. (a) On note α la solution de l'équation x = 0.7x + 210 (qu'on appelle point fixe de la fonction $f: x \mapsto 0.7x + 210$). Par conséquent $\alpha = 0.7\alpha + 210$. Valeur de $\alpha: x = 0.7x + 210 \Leftrightarrow 0.3x = 210$ d'où $\alpha = \frac{210}{0.3} = -\frac{2100}{3} = 700$.

On en déduit
$$\begin{cases} u_{n+1} = 0, 7u_n + 210 \\ \alpha = 0, 7\alpha + 210 \end{cases}$$
. Par soustraction, on obtient = $u_{n+1} - \alpha = 0, 7(u_n - \alpha)$. Par conséquent : $v_{n+1} = 0, 7v_n$: la site (v_n) est **géométrique**, de raison $q = 0, 7$.

Autre méthode: pour tout n, $v_{n+1} = u_{n+1} - 700$ = $0,7u_n + 210 - 700 = 0,7u_n - 490 = 0,7(u_n - 700)$ = $0,7v_n$ donc la suite (v_n) est **géométrique** de raison 0,7.

- (b) On en déduit $v_n = v_0 q^n : v_0 = u_0 \alpha = 3500 700$ = 2800. Par conséquent : $v_n = 2800 \times 0, 7^n$. Alors : $u_n = v_n + \alpha = 700 + 2800 \times 0, 7^n$.
- 3. En faisant un tableau de valeurs sur la calculatrice, on trouve que la voiture vaudra moins de 1 000 euros au bout de 7 ans.

VI

- 1. (a) On a $f(x) = 2x \frac{x^2}{10}$, donc $f'(x) = 2 \frac{x}{5} = \boxed{\frac{10 x}{5}}$. $f'(x) \le 0 \iff x \le 10 \text{ et } f'(x) \ge 0 \iff x \ge 10$. La fonction f est donc croissante sur [0; 10] et décroissante sur [10; 20].
 - (b) Sur [0; 20], le maximum de f est donc f(10) = 10, f(0) = 0 et f(20) = 0 sont les minimums de f.

On a donc quel que soit $x \in [0; 20]$, $f(x) \in [0; 10]$.

- (c) Voir ci-dessous.
- 2. Démontrons par récurrence la propriété P_n : pour tout n, $0 \le u_n \le u_{n+1} \le 10$.
 - Initialisation : On a $u_1 = f(u_0) = f(1) = 2 0, 1 = 1, 9$ On a bien $0 \le u_0 \le u_1 \le 10$.
 - Hérédité : Supposons qu'il existe une valeur de n quelconque, pour laquelle la propriété P_n soit vraie, c'est-àdire : $0 \le u_n \le u_{n+1} \le 10$.

On a vu que sur l'intervalle [0; 10], le fonction f est croissante, donc $\leq u_n \leq u_{n+1} \Rightarrow f(u_n) \leq f(u_{n+1}) \iff u_{n+1} \leq u_{n+2}$.

De plus d'après la question **1. b.** quel que soit un nombre dans l'intervalle [0; 20] et *a fortiori* dans l'intervalle [0; 10], son image par f et elle aussi dans l'intervalle [0: 10]. on a donc bien $0 \le u_{n+1} \le u_{n+2} \le 10$. La propriété est héréditaire.

Le propriété est donc vraie pour tout n.

3. On vient de démontrer que, pour tout $n, u_n \le u_{n+1}$, donc la suite $(u_n)_{n \ge 0}$ est croissante. Comme elle majorée par 10, elle converge vers une limite ℓ inférieure ou égale à 10.

On admet que ℓ est solution de l'équation f(x) = x.

$$f(x) = x \Leftrightarrow \frac{1}{10}x(20 - x) = x \Leftrightarrow x(20 - x) = 10x$$

$$\Leftrightarrow -x^2 + 20x = 10x$$

$$\Leftrightarrow -x^2 + 10x = 0 \Leftrightarrow x(10 - x) = 0.$$

L'équation a deux solutions 0 et 10. Comme (u_n) est croissante et que $u_0 = 1$ et la suite étant croissante, la suite est minorée par 1, donc la limite ne peut pas être 0.

Par conséquent : $\ell = 10$