
Graphes probabilistes

A Quelques exemples

I Une évolution de population

I.1 Le problème

Deux villes X et Y totalisent à elles deux une population d’un million d’habitants.
La ville X est plus agréable, mais la ville Y offre de meilleurs salaires.
20 % des habitants de Y partent chaque année habiter X pour avoir un meilleur cadre de vie, et 5 % des habi-
tants de X partent chaque année habiter Y pour augmenter leur niveau de vie.
À l’année 0, un quart des habitants sont en X .

On se pose les questions suivantes :
— Comment sera répartie la population, entre les villes X et Y au bout de 1, 2, 5, 10, 30, 40 ans?
— Que se serait-il passé au bout de 1, 2, 5, 10, 30, 40 ans si 99 % des habitants avaient été initialement en

X (ou en Y )?
— Que se serait-il passé au bout de 1, 2, 5, 10, 30, 40 ans si la population avait été également répartie entre

les deux villes en l’année zéro?

I.2 Une solution

1. L’énoncé nous dit que 95 % des gens qui sont en X y restent, 5 % partent en Y , et que 80 % des gens qui
sont en Y y restent, 20 % partant en X .
En appelant Xn la population de la ville X à l’année n et Yn celle de Y , expliquer pourquoi on peut
représenter l’évolution par le système d’équations :

{

Xn+1 = 0,95Xn +0,2Yn

Yn+1 = 0,05Xn +0,8Yn

2. On peut représenter la situation par le graphe suivant, où l’on a marqué, sur chaque arête joignant le
sommet X au sommet Y , la proportion de population qui passe à chaque étape de X à Y . Remarquons
que, puisque la population ne peut disparaître ou apparaître, la somme des coefficients sur toutes les
arêtes quittant un sommet doit être 1 :

X Y0,95
0,05

0,2
0,8

Si l’on note, pour tout entier naturel n, Pn =

(

Xn Yn

)

le vecteur ligne qui décrit la population de X et
de Y au bout de n années, déterminer la matrice M telle que le système déquation d’évolution trouvée
précédemment peut se réécrire :

Pn+1 = Pn ×M

On appelera M : matrice de transition du système.

Attention! Le produit ne se fait pas à droite de la matrice, comme on en a l’habitude, mais à gauche.
Cela présente l’avantage de garder l’écriture des vecteurs en ligne, et c’est l’habitude en probabilité.

(a) Exprimer P1 et P2 en fonction de M et de P0.
Généraliser pour obtenir Pn en fonction de P0, de M et de n.

(b) à l’aide de cette formule, répondre aux questions qu’on se pose dans le problème.
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3. (a) Que constate-t-on, quand n devient grand, quelle que soit la répartition de population à l’année
0 ?

(b) On suppose que P0 =
(

800 000 200 000
)

.
Calculer P1, P2, P3, etc.
Comment peut-on alors qualifier cette répartition, cet état ?

(c) On a vu que, quelle que soit la population de départ, le système converge vers cet état. Il peut donc
être intéressant d’être en mesure de le déterminer dès le départ.
On admet qu’une telle répartition existe et on appelle x la population de X et y celle de Y pour
lesquelles la population de chaque ville est la même chaque année.

i. Que devient le système d’équations d’évolution si
(

Xn Yn

)

=

(

x y
)

?

ii. En déduire que x et y sont solutions de :

{

0,2y = 0,05x

x + y = 1 000 000

iii. Déterminer alors x et y .

II Maladie

Un individu vit dans un milieu où il est susceptible d’attraper une maladie par piqûre d’insecte. Il peut être
dans l’un des trois états suivants : immunisé (I ), malade (M), sain, c’est-à-dire non malade et non immunisé,
(S).
D’un mois à l’autre, son état peut changer selon les règles suivantes :

— étant immunisé, il peut le rester avec une probabilité 0,9 ou passer à l’état S avec une probabilité 0,1 ;
— étant dans l’état S, il peut le rester avec une probabilité 0,5 ou passer à l’état M avec une probabilité

0,5 ;
— étant malade, il peut le rester avec une probabilité 0,2 ou passer à l’état I avec une probabilité 0,8.

1. Tracer un graphe probabiliste pour décrire cette situation et écrire la matrice de transition.

2. Calculer l’état de probabilité de l’individu au bout de trois mois, de six mois, d’un an, de deux ans pour
chacune des situations suivantes :
— au départ, il est immunisé;
— au départ, il est non malade et non immunisé;
— au départ, il est malade.

3. On note
(

i m s
)

l’état stable du système.

(a) Montrer que i , m, s sont solutions du système :

(S) =















0,8m −0,1i = 0
0,5s −0,8m = 0

0,1i −0,5s = 0
i +m + s = 1

(b) En déduire l’état stable.

B Cas général : graphes probabilistes à p états

On considère un système qui peut se trouver dans p états {1 ; 2 ; . . . ; p}, avec une certaine probabilité, va-
riable au cours du temps, pour chaque état.

On s’intéresse à l’évolution de ce système au cours du temps, et on fait l’hypothèse que la probabilité de
transition de l’état i à l’état j est indépendante du temps, et ne dépend pas de l’histoire antérieure, mais
seulement de l’état dans lequel on se trouve.
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De bons exemples de tels systèmes sont donnés par les jeux de hasard, tels que jeu de l’oie, Monopoly,
jacquet, petits chevaux, etc. Pour de tels jeux, l’état est donné par la case sur laquelle on se trouve; la façon
dont on y est arrivé n’a pas d’importance pour la suite du jeu.

Les systèmes qu’on observe dans la vie réelle sont en général beaucoup plus complexes, mais l’approxi-
mation simple qu’on en fait ici donne souvent des indications utiles ; ce type de modèle est utilisé en pratique
dans un grand nombre de situations, avec de bons résultats.

On peut représenter un tel système par un graphe orienté, dont les sommets sont les états du système, et
où l’on associe à chaque transition, de l’état i à l’état j , une arête orientée allant de i vers j , étiquetée par la
probabilité de transition, c’est-à-dire la probabilité conditionnelle d’être dans l’état j à l’instant n+1 sachant
que l’on est dans l’état i à l’instant n. Remarquons que l’on peut rester dans un même état : le graphe peut
avoir des boucles.

On appelle graphe probabiliste un graphe orienté, tel que pour chaque couple de sommets (i ; j ) distincts
ou confondus il existe au plus une arête de i vers j , et où chaque arête est étiquetée par un réel pi j

compris entre 0 et 1, la somme des poids des arêtes issues d’un même sommet étant égale à 1.

Définition

De même qu’à un graphe (orienté ou non), on associe une matrice d’adjacence A, dont le terme ai j

compte le nombre d’arêtes joignant le sommet i au sommet j , on peut associer à un graphe probabiliste
une matrice qui décrit les probabilités de transition :

étant donné un graphe probabiliste à p sommets, on appelle matrice de transition associée la matrice
carrée M = (mi j ) à p lignes et p colonnes, dont le coefficient mi j est l’étiquette de l’arête orientée de i

vers j si elle existe (c’est-à-dire la probabilité de transition de i à j ), et 0 sinon.

Définition

On veut étudier l’évolution d’un tel système au cours du temps; on note Xn le vecteur ligne à p éléments
dont l’élément d’ordre j est la probabilité que le système se trouve à l’instant n dans l’état j (Attention aux
indices ! on a ici une suite de vecteurs lignes, avec chacun p composantes !).

La propriété fondamentale est la suivante :

Pour tout entier n, on a Xn+1 = Xn ×M

Propriété

On admet ce résultat.
On en déduit immédiatement :

Pour tout entier n > 0, on a : Xn = X0 ×Mn

Propriété

En effet :
X2 = X1M =

(

X0M)M = X0M2)

X3 = X2M =

(

X0M2)M = X0M3)

· · ·

Xn = Xn−1M =

(

X0Mn−1)

M = X0Mn

On admet que la propriété est vraie pour tout rang n.
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Cette formule, qui permet de calculer la répartition de probabilités au temps n si on la connaît au temps
0, est fondamentale pour tous les exercices.

Un cas particulièrement intéressant est celui où la répartition de probabilité est stable au cours du temps.

On appelle état stable un vecteur ligne X =

(

x1 . . . xp

)

à p composantes tel que X = X ×M et
p
∑

i=1
xi = 1

Définition

La dernière condition
p
∑

i=1
xi = 1 est due au fait que X représente une répartition de probabilité.

Remarquons que la recherche d’un état stable n’est pas difficile en pratique : il s’agit de résoudre l’équation

X = X ×M , et d’en chercher une solution satisfaisant
p
∑

i=1
xi = 1, ce qui se fait sans problème pour une matrice

M donnée.
On peut interpréter cette équation de la manière suivante : pour obtenir un état stable, il faut que toutes les

transitions s’équilibrent ; si l’on considère le problème comme une évolution de population, il faut que, pour
tout état i , la quantité de personnes qui quittent l’état i à chaque étape soit égale à la quantité de personnes
qui y arrivent.

Ce qui est moins évident, c’est qu’un tel état existe, et qu’il soit unique. Ce qui se passe quand on ne part
pas d’un état stable n’est pas évident non plus. Nous allons l’étudier en détail dans le cas d’un système à deux
états, cas qui est accessible au niveau de la terminale.

C Un cas particulier : les graphes probabilistes à 2 états

On suppose qu’il n’y a que deux états, notés 1 et 2. On note Un (resp. Vn) la probabilité qu’à l’instant n, le
système se trouve dans l’état 1 (resp. 2).

Pour tout entier n, on note Xn le vecteur-ligne à deux colonnes, Xn =

(

Un Vn

)

. Remarquons que l’on a
toujours Un +Vn = 1.

On note a la probabilité de transition de l’état 1 à l’état 2, c’est-à-dire la probabilité que le système passe à
l’état 2 à l’étape n +1 sachant que le système est à l’état 1 à l’étape n et b la probabilité de transition de l’état
2 à l’état 1.

Les probabilités de demeurer dans l’état 1 ou dans l’état 2 sont donc 1−a et 1−b.
Le système peut donc être représenté par le graphe probabiliste suivant :

1 21−a

a

b

1−b

et la matrice correspondante est :

M =

(

1−a a

b 1−b

)

Les nombres a et b sont tous deux compris entre 0 et 1.
Il y a quelques cas triviaux que l’on peut traiter à part :
— Si a et b sont nuls, M est la matrice identité, et tous les états sont stables. Ce n’est pas étonnant, puis-

qu’il est impossible de changer !
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— Si l’un des deux seulement est nul, par exemple a, on voit que l’on finit toujours par arriver dans l’état
1. C’est le cas d’une population qui ne se renouvelle pas, et dont les individus peuvent être dans deux
états, vivants (état 2) ou morts (état 1) : à long terme, la population ne sera plus composée que de morts.
On parle alors d’état absorbant (pour l’état 1). Il y a donc un état stable.

— Enfin, si les deux coefficients a et b sont égaux à 1, le système clignote : il oscille sans se stabiliser entre
l’état 1 et l’état 2, et se retrouve tous les deux coups dans le même état. Il n’y a pas d’état stable.

Ces cas particuliers étant faciles à étudier, et peu intéressants, on supposera désormais que a et b sont

strictement positifs, et ne sont pas tous deux égaux à 1.

On admettra alors le résultat général suivant :

Considérons un graphe probabiliste à deux états, de matrice de transition M =

(

1−a a

b 1−b

)

telle que

0 < a < 1 et 0 < b < 1. Alors, le système admet un unique état stable, indépendamment de l’état initial.

Théorème (admis)

Liens Internet :

On peut consulter les cours suivants sur Internet :

• https ://www.maths-cours.fr/cours/graphe-probabiliste-spe/

• https ://www.maths-et-tiques.fr/telech/GraphesTESL2.pdf

• vidéo : https ://www.youtube.com/watch ?v=rHylCtXtdNs

• https ://www.youtube.com/watch ?v=P39RdSm5aZE
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