Équations et inéquations du second degré

Table des matières

I	Quelq	ues exemples préliminaires	-
II	Résolu	ution de l'équation $ax^2 + bx + c = 0$	2
	II.1	Résolution	2
	II.2	Factorisation de $ax^2 + bx + c$ ($a \neq 0$)	4
III	Variat	ions de $f: x \mapsto ax^2 + bx + c \ (a \neq 0)$	ļ
IV	Signe	de l'expression $ax^2 + bx + c$	-

I Quelques exemples préliminaires

1. Résoudre l'équation $x^2 - 36 = 0$.

$$x^2 - 36 = 0$$
 s'écrit $x^2 - 6^2 = 0$ soit $(x + 6)(x - 6) = 0$.

Un produit de facteurs est nul si, et seulement si, l'un des facteurs est nul. L'ensemble des solutions est $\mathscr{S} = \{-6; 6\}$.

2. Résoudre l'équation $x^2 - 7 = 0$.

$$x^2 - 36 = 0$$
 s'écrit $x^2 - \sqrt{7}^2 = 0$ soit $(x + \sqrt{7})(x - \sqrt{7}) = 0$.

L'ensemble des solutions est $\mathscr{S} = \{-\sqrt{7}; \sqrt{7}\}\$.

3. Résoudre l'équation : $x^2 + 5 = 0$.

Pour tout x, $x^2 \ge 0$ donc $x^2 + 5 \ge 5$ et ne peut s'annuler : l'équation n'a pas de solution. $\mathscr{S} = \emptyset$

4. Soit l'équation $x^2 + 6x + 9 = 0$.

$$x^2 = 6x + 9 = x^2 + 1 \times x \times 3 + 3^2$$
 donc on reconnaît une identité remarquable : $x^2 = 6x + 9 = (x + 3)^2$.

L'équation s'écrit : $(x+3)^2 = 0$ qui a pour solution $\mathscr{S} = \{-3\}$

5. Soit l'équation $x^2 + 5x + 6 = 0$.

On voit $x^2 + 5x$ comme le début d'une identité remarquable.

$$(a+b)^2 = a^2 + 2ab + b^2$$
 donc $a^2 + 2ab = (a+b)^2 - b^2$.

Or:
$$x^2 + 4x = x^2 + 2 \times \frac{5}{2}x = a^2 + 2ab$$
 en posant $\begin{cases} a = x \\ b = \frac{5}{2} \end{cases}$.

D'où:
$$x^2 + 5x = \left(x + \frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 = \left(x + \frac{5}{2}\right) - \frac{25}{4}$$
. Par conséquent: $x^2 + 5x + 6 = \left(x + \frac{5}{2}\right)^2 - \frac{25}{6} + 6 = \left(x + \frac{5}{2}\right)^2 - \frac{1}{4}$

On peut alors résoudre l'équation :

 $x^2 + 5x + 6 = 0 \Leftrightarrow \left(x + \frac{5}{2}\right)^2 - \frac{1}{4} = 0$ et on factorise avec la troisième identité remarquable :

On en déduit :
$$\left[\left(x + \frac{5}{2} \right) + \frac{1}{2} \right] \left[\left(x + \frac{5}{2} \right) - \frac{1}{2} \right] = 0 \Leftrightarrow (x+3)(x+2) = 0.$$

L'ensemble des solutions est : $\mathcal{S} = \{-3; -2\}$

6. Soit l'équation $x^2 - 3x + 11 = 0$.

On essaye de faire apparaître le début d'une identité remarquable. On sait que $(a-b)^2 = a^2 - 2ab + b^2$ donc $a - -2ab = (a-b)^2 - b^2$

$$x^{2} - 3x = x^{2} - 2 \times \frac{3}{2}x = a^{2} - 2ab \text{ en posant } \begin{cases} a = x \\ b = \frac{3}{2} \end{cases}.$$

Alprs:
$$x^2 - 3x = \left(x - \frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 = \left(xc - \frac{3}{2}\right)^2 - \frac{9}{4}$$
.

L'équation
$$x^2 - 3x + 11 = 0$$
 s'écrit alors : $\left(x - \frac{3}{2}\right)^2 - \frac{9}{4} + 11 = 0$.

D'où : $\left(x - \frac{3}{2}\right)^2 + \frac{35}{4} = 0$ Cette équation n'a pas de solution, car $\left(x - \frac{3}{2}\right)^2 + \frac{35}{4} > 0$ (somme d'un nombre supérieur ou égal à 0 avec un nombre strictement positif)

Par conséquent : $\mathscr{S} = \emptyset$

On constate sur quelques exemples qu'une équation du type $ax^2 + bx + c = 0$ peut avoir deux solutions, une solution ou aucune.

On va voir dans la suite comment connaître le nombre de solutions et comment les calculer directement (si elles existent).

Résolution de l'équation $ax^2 + bx + c = 0$

Résolution **II.1**

Définition

On appelle équation du second degré toute équation du type $ax^2 + bx + c = 0$, où a, b et c sont des réels donnés, avec $a \neq 0$

L'expression $f(x) = ax^2 + bx + c$ peut s'écrire sous la forme $f(x) = a(x-\alpha)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$. Cette forme est appelée forme canonique

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^{2} - \frac{b^{2}}{4a} + c = \boxed{a(x - \alpha) + \beta} \text{ en posant}$$

$$\alpha = -\frac{b}{2a};$$

on a alors $\beta = -\frac{b^2}{4a} + c = f(\alpha)$, car en remplaçant x par α dans $f(x) = a(x - \alpha)^2 + \beta$, on trouve β .

On remarque que :
$$f(x) = a(x - \alpha) - \frac{b^2}{4a} + c = a(x - \alpha)^2 - \frac{b^2}{4a} + \frac{4ac}{4a} = \boxed{a(x - \alpha)^2 - \frac{b^2 - 4ac}{4a}}$$
.

On pose $\Delta = b^2 - 4ac$. (qu'on apelle discriminant).

L'équation s'écrit :
$$a\left[\left(x+\frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = 0.$$

Remarque: puisque $a \neq 0$, on peut simplifier par a.

L'équation devient :
$$\left(\mathbf{x} + \frac{\mathbf{b}}{2\mathbf{a}}\right)^2 - \frac{\Delta}{4\mathbf{a}^2} = 0$$

Tout dépend alors du signe de Δ :

• Premier cas $\Delta < 0$:
Alors: $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = \left(x + \frac{b}{2a}\right)^2 + \left(\frac{-\Delta}{4a^2}\right) > 0$ (car le premier terme étant le carré d'un nombre réel, il est positif ou nul et le second terme est strictement positif) donc l'équation n'a pas de solution.

• Second cas
$$\Delta = 0$$
:
L'équation devient : $\left(x + \frac{b}{2a}\right)^2 = 0$ qui a pour solution : $x = -\frac{b}{2a}$. $\mathscr{S} = \left\{x = -\frac{b}{2a}\right\}$

• Troisième cas $\Delta > 0$:

On a la différence de deux carrés donc on utilise la troisième identité remarquable :

$$\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0 \Leftrightarrow \left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{\Delta}}{2a}\right)^2 = 0 \Leftrightarrow \left[\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\right] \left[\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)\right] = 0$$

$$\Leftrightarrow \left[\left(x - \frac{b - \sqrt{\Delta}}{2a}\right)\right] \left[\left(x - \frac{b + \sqrt{\Delta}}{2a}\right)\right] = 0.$$

Un produit de facteurs est nul si et seulement si l'un des facteurs est nul : L'équation admet alors deux

solutions:
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$. $\mathscr{S} = \left\{ \frac{-b - \sqrt{\Delta}}{2a}; \frac{-b + \sqrt{\Delta}}{2a} \right\}$

Résumé:

Signe de Δ	Nombre de solutions	Solutions
$\Delta < 0$	pas de solution	$\mathscr{S} = \emptyset$
$\Delta = 0$	une solution	$\mathscr{S} = \left\{ -\frac{b}{2a} \right\}$
$\Delta > 0$	deux solutions	$\mathscr{S} = \left\{ \frac{-b - \sqrt{\Delta}}{2a} ; \frac{-b + \sqrt{\Delta}}{2a} \right\}$

Exemples d'application

1. Résoudre l'équation $3x^2 + 5x - 2 = 0$.

C'est une équation du type $ax^2 + bx + c = 0$ avec a = 3, b = 5 et c = -2.

$$\Delta = b^2 - 4ac = 5^2 - 4 \times 3 \times (-2) = 25 + 24 = 49 > 0.$$

L'équation a donc deux solutions :
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-5 - 7}{6} = -2$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-5 + 7}{6} = \frac{1}{3}$

$$\mathscr{S} = \left\{-2 \; ; \; \frac{1}{3}\right\}$$

2. Résoudre l'équation : $5x^2 + x - 3$.

$$\Delta = 1^2 - 4 \times 5 \times (-3) = 61 > 0.$$

Comme $\Delta > 0$, l'équation a deux solutions : $\mathscr{S} = 0$

$$\mathscr{S} = \left\{ \frac{-1 - \sqrt{61}}{10} \; ; \; \frac{-1 + \sqrt{61}}{10} \right\}$$

3. Résoudre l'équation : $x^2 + 10x + 25 = 0$.

 $\Delta = 10^2 - 4 \times 1 \times 25 = 0$ donc l'expression est en fait une identité remarquable.

L'équation s'écrit : $(x+5)^2 = 0$ donc il n'y a qu'une solution : $\mathscr{G} = \{-5\}$

4. Soit l'équation : $x^2 + x + 1 = 0$.

$$\Delta = 1^2 - 4 \times 1 \times 1 = -3 < 0.$$

L'équation n'a pas de solution : $\mathscr{S} = \emptyset$

II.2 Factorisation de $ax^2 + bx + c$ ($a \ne 0$)

Propriété

Soit $f(x) = ax^2 + bx + c$.

On pose $\Delta = b^2 - 4ac$.

- Si Δ < 0, f(x) = ax² + bx + c ne se factorise pas.
 Si Δ = 0, f(x) = ax² + bx + c = a(x α)² avec α = -b/2a (en fait, on commence par mettre a en facteur et on reconnaît alors une identité remarquable)
- Si $\Delta > 0$, $f(x) = a(x x_1)(x x_2)$ avec $x_1 = \frac{-b \sqrt{\Delta}}{2}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2}$

Exemples

1. Soit $f(x) = 3x^2 - 5x + 7$; $f(x) = ax^2 + bx + c$ avec $\begin{cases} a = 3 \\ b = -5 \\ c = 7 \end{cases}$.

 $\Delta = b^2 - 4ac = (-5)^2 - 4 \times 3 \times 7 = 25 - 84 < 0 \text{ donc } f(x) \text{ ne se factorise pas dans } \mathbb{R}.$

2. Soit $f(x) = 3x^2 - 42x + 147$.

On voit que les trois coefficients sont des multiples de 3.

Alors
$$f(x) = 3(x^2 - 14x + 49) = 3(x^2 - 2 \times x \times 7 + 7^2) = 3(x - 7)^2$$

3. Soit
$$f(x) = 4x^2 - 8x - 140 = ax^2 + bx + c$$
 avec
$$\begin{cases} a = 4 \\ b = -8 \\ c = -140 \end{cases}$$
.

 $\Delta = b^2 - 4ac = (-8)^2 - 4 \times 4 \times (140) = 64 + 2240 = 2304$

Le polynôme a deux racines :

•
$$x_1 = \frac{-b - \sqrt{\Delta}}{2} = \frac{8 - \sqrt{2304}}{2 \times 4} = \frac{8 - 48}{8} = -5$$

•
$$x_2 = \frac{-b + \sqrt{\Delta}}{2} = \frac{8 + \sqrt{2304}}{2 \times 4} = \frac{8 + 48}{8} = 7$$

• $x_2 = \frac{-b + \sqrt{\Delta}}{2} = \frac{8 + \sqrt{2304}}{2 \times 4} = \frac{8 + 48}{8} = 7$ On en déduit que : $f(x) = 4x^2 - 8x - 140 = 4(x+5)(x-7)$.

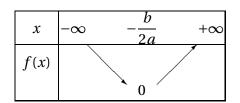
Remarque: il valait mieux factoriser avant!

 $4x^2 - 8x - 140 = 4(x^2 - 2x - 35)$ et calculer le discriminant et les racines de $x^2 - 2x - 35$.

Variations de $f: x \mapsto ax^2 + bx + c \ (a \neq 0)$

- Si a > 0, $f: x \mapsto ax^2 + bx + c$ est décroisante sur $\left[-\frac{b}{2a}\right]$ et croissante sur $\left[-\frac{b}{2a}\right]$; $+\infty$. Si a < 0, $f: x \mapsto ax^2 + bx + c$ est croisante sur $\left[-\infty; -\frac{b}{2a}\right]$ et décroissante sur $\left[-\frac{b}{2a}; +\infty\right[$.

a > 0



Démonstration: Supposons que a > 0.

La forme canonique de f(x) est $f(x) = a(x-\alpha)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$. Montrons que f est croissante sur $\left[-\frac{b}{2a}; +\infty\right[$.

Soient deux nombres x_1 et x_2 , quelconques, appartenant à cet intervalle.

On suppose que $\alpha \leq x_1 < x_2$.

Alors
$$0 \le x_1 - \alpha < x_2 - \alpha$$
.

Ce sont des nombres positifs, donc, comme la fonction carré est croissante sur l'intervalle $[0; +\infty[$, on a :

$$0 \le (x_1 - \alpha)^2 < (x_2 - \alpha)^2$$
.

$$a > 0$$
 donc $0 \le a(x_1 - \alpha)^2 < a(x_2 - \alpha)^2$. (En multipliant par a)

On aioute β .

On obtient
$$\beta \le (x_1 - \alpha)^2 + \beta < (x_2 - \alpha)^2 + \beta$$
.

Donc $\beta \le f(x_1) < f(x_2)$.

$$\alpha \leq x_1 < x_2 \Rightarrow f\left(x_1\right) < f\left(x_2\right).$$

f conserve l'ordre donc f est croissante sur l'intervalle $[\alpha; +\infty[$.

Sur $]-\infty$; α], on utilise la même méthode:

Ce qui change, c'est que $x_1 - \alpha$ et $x_2 - \alpha$ sont négatifs et la fonction carré est décroissante sur les nombres négatifs.

On suppose que $x_1 < x_2 \le \alpha$.

Alors $x_1 - \alpha < x_2 - \alpha \le 0$.

Ce sont des nombres négatifs, donc, comme la fonction carré est décroissante sur l'intervalle $]-\infty$; 0], on a : $(x_1 - \alpha)^2 > (x_2 - \alpha)^2$.

a > 0 donc $a(x_1 - \alpha)^2 > a(x_2 - \alpha)^2 \ge 0$. (En multipliant par a)

On ajoute β .

On obtient $(x_1 - \alpha)^2 + \beta > (x_2 - \alpha)^2 + \beta \ge \beta$.

Donc $f(x_1) > f(x_2)$.

 $\alpha \leq x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

f renverse l'ordre donc f est décroissante sur l'intervalle $]-\infty$; α].

Dans le cas où a < 0, nous avons le même type de démonstration, en renversant les inégalités lorsque l'on multiplie par a.

Remarque: $f: x \mapsto a(x-\alpha)^2 + \beta$ peut se décomposer en : $x:\mapsto (x-\alpha)^2 \mapsto a(x-\alpha)^2 \mapsto a(x-\alpha)^2 + \beta$.

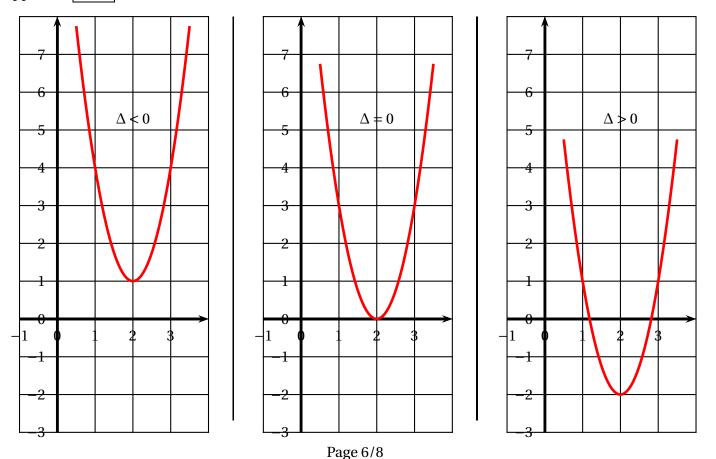
$$x : \mapsto (x - \alpha)^2 \mapsto a(x - \alpha)^2 \mapsto a(x - \alpha)^2 + \beta.$$

Cela revient à faire successivement une translation horizontale, puis une « dilation » puis une translation erticale.

On en déduit que \mathcal{C}_f est une parabole.

Graphiquement, on a trois cas possibles, selon le signe de Δ .

Supposons |a>0|



Si a < 0, on a les mêmes cas, avec une parabole trouvée vers le bas.

IV Signe de l'expression $ax^2 + bx + c$

On cherche le signe de $ax^2 + bx + c$ en fonction de x.

Pour cela, on va utiliser les résultats obtenus précédemment.

On suppose que a > 0.

On regarde ce qu'on a obtenu graphiquement.

- $\Delta < 0$: $ax^2 + bx + c$ ne s'annule pas; la courbe est au-dessus de l'axe des abscisses, donc $ax^2 + bx + c > 0$ pour tout x.
- $\Delta = 0$: $ax^2 + bx + c$ s'annule pour une seule valeur; la courbe est au-dessus de l'axe des abscisses, avec un point de contact avec l'axe des abscisses, donc $ax^2 + bx + c \ge 0$ pour tout x.
- $\Delta > 0$: $ax^2 + bx + c$ s'annule pour deux valeurs x_1 et x_2 , en appelant x_1 la plus petite des deux racines; On remarque que $ax^2 + bx + c \ge 0$ sur $]-\infty$; $x_1]$ et sur $[x_2; +\infty[$ et $ax^2 + bx + c \le 0$ sur $[x_1; x_2]$.

On a des signes opposés si a < 0.

Résumé:

$\Delta < 0$		
x	$-\infty$	$+\infty$
f(x)	signe	e de <i>a</i>

$\Delta = 0$		
x	$-\infty$ $-\frac{b}{2a}$ +	8
f(x)	signe de $a \mid \emptyset$ signe de a	

$\Delta > 0$				
X	$-\infty$	x_1	x_2	$+\infty$
f(x)	sig	ne de $a \emptyset$ signe α	de −a 0 signe	de a

Exemples

1. Étudier le signe de $3x^2 - 5x + 12$. $3x^2 - 5x + 12 = ax^2 + bx + c$ avec a = 3; b = -5 et c = 12. $\Delta = (-5)^2 - 4 \times 3 \times 12 = 25 - 144 = -119 < 0$. L'expression est du signe de a = 3, donc positive, pour tout x.

$$\begin{array}{c|cc} x & -\infty & +\infty \\ 3x^2 - 5x + 12 & + \end{array}$$

2. Étudier le signe de $4x^2 - \frac{24}{7}x + \frac{36}{49}$:

$$4x^{2} - \frac{24}{7}x + \frac{36}{49} = ax^{2} + bx + c \text{ avec } a = 4; b = -\frac{24}{7} \text{ et } c = \frac{36}{49}.$$

$$\Delta = \left(-\frac{24}{7}\right)^2 - 4 \times 4 \times \left(\frac{36}{49}\right) = \frac{576}{49} - \frac{576}{49} = 0.$$

L'expression a une racine : $x_0 = -\frac{b}{2a} = -\frac{-\frac{24}{7}}{8} = \frac{3}{7}$.

Elle s'annule pour $x = \frac{3}{7}$ et est du signe de a = 4, donc positive, pour toutes les autres valeurs de x.

x	$-\infty \frac{3}{7} +\infty$
$4x^2 - \frac{24}{7}x + \frac{36}{49}$	+ 0 +

Remarque: on sait d'après le cours que : $4x^2 - \frac{24}{7}x + \frac{36}{49} = a(x - x_0)^2 = \left| 4\left(x - \frac{3}{7}\right)^2 \right|$

On aurait pu factoriser de le début

$$4x^{2} - \frac{24}{7}x + \frac{36}{49} = 4\left(x^{2} - \frac{6}{7} + \frac{9}{49}\right) = 4\left[x^{2} - 2 \times x \times \frac{3}{7} + \left(\frac{3}{7}\right)^{2}\right] = 4\left(x - \frac{3}{7}\right)^{2}$$

3. Étudier le signe de $-5x^2 + 20x + 105$

$$-5x^{2} + 20x + 105 = ax^{2} + bc + c \text{ avec} \begin{cases} a = -5 \\ b = 20 \\ c = 105 \end{cases}$$

$$\Delta = 20^2 - 4 \times (-5) \times 105 = 400 + 2100 = 2500 > 0$$

L'expression a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-20 - \sqrt{2500}}{-10} = \frac{-20 - 50}{-10} = 7$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-20 + \sqrt{2500}}{-10} = \frac{-20 + 50}{-10} = -3$$

 $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-20 + \sqrt{2500}}{-10} = \frac{-20 + 50}{-10} = -3$ L'expression est du signe de -a = 5 > 0 à l'extérieur de l'intervalle formé par les racines et du signe de a = -5 < 0 entre les racines.

X	$-\infty$ -3 7 +c	∞
$-5x^2 + 20x + 105$	+ 0 - 0 +	

4. Résoudre l'inéquation $3x^2 - 8x + 2 > 0$.

$$3x^{2} - 8x + 2 = ax^{2} + bx + c \text{ avec } \begin{cases} a = 3\\ b = -8\\ c = 2 \end{cases}$$

$$\Delta = (-8)^2 - 4 \times 3 \times 2 = 64 - 24 = 40 > 0$$

L'expression a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-8) - \sqrt{40}}{6} = \frac{8 - 2\sqrt{10}}{6} = \frac{2(4 - \sqrt{10})}{2 \times 3} = \frac{4 - \sqrt{10}}{3}$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-8) + sqrt40}{6} = \frac{8 + 2\sqrt{10}}{6} = \frac{2(4 + \sqrt{10})}{2 \times 3} = \frac{4 + \sqrt{10}}{3}.$$

On en déduit le tableau de signes :

On veut que $3x^2 - 8x + 2 > 0$.

L'ensemble des solutions est $|\mathscr{S} = \left| -\infty; \frac{4 - \sqrt{10}}{3} \right| \cup \left| \frac{4 + \sqrt{10}}{3}; +\infty \right|$