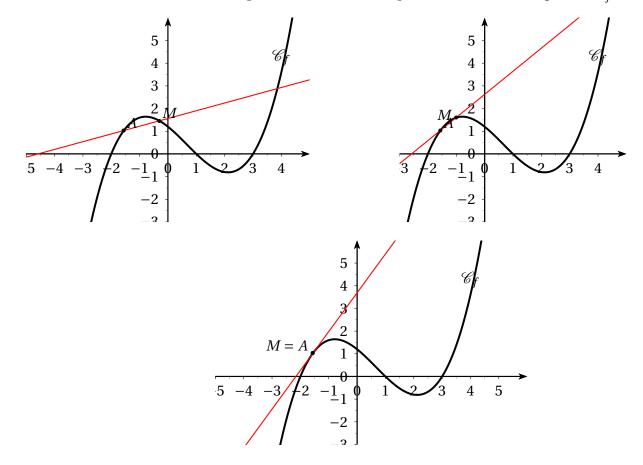
Fonctions numériques : dérivation

Table des matières

I	Notion de tangente à une courbe	1
II	Nombre dérivé de f en a et fonction dérivée :	2
III	Tableau des dérivées usuelles :	4
IV	Dérivées et opérations:	5
\mathbf{V}	Variations d'une fonction	6

I Notion de tangente à une courbe

Soit f une fonction définie sur un intervalle I de courbe représentative \mathscr{C}_f et soit A un point fixe de \mathscr{C}_f . Soit M un point variable de \mathscr{C}_f . On trace la droite (AM) qui est sécante à \mathscr{C}_f . On fait tendre M vers A. Si, lorsque M tend vers A, la sécante admet une position limite, on dit que cette limite est tangente à \mathscr{C}_f .



Nombre dérivé de f en a et fonction dérivée :

Notons a l'abscisse de A et x l'abscisse de M. Le coefficient directeur de la sécante (AM) est : $\frac{f(x) - f(a)}{x - a}$.

Dire que la sécante a une position limite qui est la droite tangente à \mathscr{C}_f en A signifie que $\lim_{x\to a} \frac{f(x)^{-u} - f(a)}{r-a}$ existe et est un nombre fini.

Si ce nombre **existe** et s'il est **fini**, on pose : $\mathbf{f}'(\mathbf{a}) = \lim_{\mathbf{x} \to \mathbf{a}} \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})}{\mathbf{x} - \mathbf{a}}$ et ce nombre est le **nombre dérivé** de f en

On dit alors que f est dérivable en a.

En posant x = a + h, on obtient: $\mathbf{f}'(\mathbf{a}) = \lim_{\mathbf{h} \to \mathbf{0}} \frac{\mathbf{f}(\mathbf{a} + \mathbf{h}) - \mathbf{f}(\mathbf{a})}{\mathbf{h}}$.

Exemple: $f(x) = x^2$.

Montrons que f est dérivable en 3.

Pour tout h, $\frac{f(3+h)-f(3)}{h} = \frac{[3+h]^2-3^2}{h} = \frac{3^2+2\times 3\times h+h^2-3^2}{h} = \frac{6h+h^2}{h} = 6+h$.

Par conséquent : $\lim_{h\to 0} \left(\frac{f(3+h) - f(3)}{h} \right) = 6.$ f est dérivable en a et f'(3) = 6

Cas général : Pour tout $a \in \mathbb{R}$: $\frac{f(a+h)-f(a)}{h} = \frac{[a+h]^2-a^2}{h} = \frac{a^2+2ah+h^2-a^2}{h} = \frac{2ah+h^2}{h} = 2a+h$.

Par conséquent : $\lim_{h\to 0} \left(\frac{f(a+h) - f(a)}{h} \right) = 2a$.

f est dérivable en a et f'(a) = 2a

Par définition, f'(a) est le coefficient directeur de la tangente à \mathscr{C}_f en a.

L'équation de la tangente est alors : $\mathbf{v} = \mathbf{f}'(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \mathbf{f}(\mathbf{a})$.

Démonstration:

Rappel : la droite, de coefficient directeur a et passant par le point M_0 de coordonnées $(x_0; y_0)$ a pour équation $y - y_0 = a(x - x_0).$

En effet, l'équation est de la forme y = ax + b.

Comme M_0 appartient à cette droite, ses coordonnées vérifient cette équation, donc $y_0 = ax_0 + b$.

Par conséquent :
$$\begin{cases} y = ax + b \\ y_0 = ax_0 + b \end{cases}$$

Par soustraction, on obtient : $y - y_0 = a(x - x_0)$.

Pour la tangente, on obtient donc : $y - y_A = f'(a)(x - x_A)$ qui donne $y = f'(a)(x - x_A) + f(a)$.

f est dérivable sur un intervalle ouvert I si f est dérivable en tout a de I.

La dérivée f' de f est elle-même une fonction. Si elle est dérivable, on appelle f'' sa dérivée (dérivée seconde de f).

Cette dérivée seconde peut elle-même être dérivable et ainsi de suite. Les dérivées d'ordre n, avec $n \ge 3$, se

Ainsi: f'' = (f')'; $f^{(3)} = (f'')'$ et plus généralement $f^{(n+1)} = (f^{(n)})'$

Exemples:

- 1. Soit $f(x) = 3x^4 + 5x^2 + 2x + 1$. On a: $f'(x) = 12x^3 + 10x + 2$; $f''(x) = 36x^2 + 10$; $f^{(3)}(x) = 72x$: $f^{(4)}(x) = 72$; $f^{(5)}(x) = 0$ et les dérivées suivantes sont toutes égales à la fonction nulle.
- 2. Imaginons qu'il existe une fonction f définie et dérivable sur \mathbb{R} telle que, f'(x) = f(x). f est-elle dérivable à l'ordre 3 si oui, que vaut $f^{(3)}$? Réponse : f' = f donc f' est dérivable et f'' = (f')' = f' et de même $f^{(3)} = f$. On pourrait alors montrer par récurrence, que la fonction f vérifie alors : pour tout n, $f^{(n)} = f$. On étudiera cette fonction plus en détail dans un prochain chapitre.

Exercices

- Montrer que la fonction $x \mapsto |x|$ n'est pas dérivable en 0.
- Étudier la dérivabilité de la fonction $x \mapsto x|x|$ en 0.

Solutions:

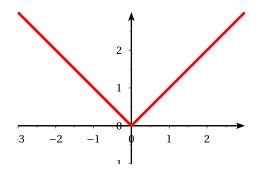
• Soit f la fonction $x \mapsto |x|$

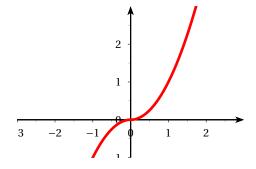
Solit final forection $x \mapsto |x|$. $\forall x \neq 0, \frac{f(x) - f(0)}{x - 0} = \frac{|x| - 0}{x - 0} = \frac{|x|}{x}.$ Si $x < 0, \frac{|x|}{x} = \frac{-x}{x} = -1$ et pour $x > 0, \frac{|x|}{x} = \frac{x}{x} = 1$.
On en déduit que : $\lim_{\substack{x \to 0 \\ x < 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x < 0}} (-1) = -1$, alors que $\lim_{\substack{x \to 0 \\ x > 0}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x > 0}} (1) = 1$.

La limite à gauche et à droite n'est pas la même, donc la limite en 0 n'existe pas; f n'est pas dérivable en 0 (mais l'est à gauche et à droite); on dit que la courbe admet une demi-tangente à gauche et une demi-tangente à droite.

• Soit $g: x \mapsto x|x|$. Cette fois, on a: $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = \lim_{x\to 0} \frac{x|x|}{x} = \lim_{x\to 0} (|x|) = 0$; la limite existe, donc la fonction g est dérivable en 0 et la courbe représentative de g a une tangente en 0.

Voici les deux représentations graphiques de f et de g.





III Tableau des dérivées usuelles :

Fonction f définie par :	Fonction f' définie par :	Domaine de décidabilité de validité
$f(x) = k \in \mathbb{R}$	f'(x) = 0	\mathbb{R}
$f(x) = x^n (n \in \mathbb{N}^*)$	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \frac{1}{x^n} = x^{-n} \ (n \in \mathbb{N}, \ n \ge 2)$		\mathbb{R}^*
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$]0; +∞[
$f(x) = \cos x$	$f'(x) = -\sin x$	\mathbb{R}
$f(x) = \sin x$	$f'(x) = \cos x$	\mathbb{R}

IV Dérivées et opérations :

Soient *u*, *v* deux fonctions dérivables sur un intervalle *I* et *k* un réel.

•
$$(ku)' = ku'$$

• $(u+v)' = u'+v'$
• $(uv)' = u'v+uv'$
• $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}, u(x) \neq 0$
• $\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}, v(x) \neq 0$

Exemples:

1.
$$f(x) = 3x^5$$
; $f = ku$ avec $k = 3$ et $u(x) = x^5$.
 $f' = ku'$ avec $u'(x) = 5x^4$ donc $f'(x) = 3 \times 5x^4 = \boxed{15x^4}$.

2.
$$f(x) = x + \frac{1}{x} \operatorname{sur} \mathbb{R}^*$$
.
 $f = u + v \operatorname{avec} \begin{cases} u(x) = x \\ v(x) = \frac{1}{x} \end{cases}$.
 $f' = u' + v' \operatorname{avec} \begin{cases} u'(x) = 1 \\ v'(x) = -\frac{1}{x^2} \end{cases}$.
Alors: $f'(x) = 1 + \left(-\frac{1}{x^2}\right) = 1 - \frac{1}{x^2}$

3.
$$f(x) = (3x+5)\sqrt{x} \operatorname{sur} \mathbb{R}^+$$
.
 $f = uv \operatorname{avec} \begin{cases} u(x) = 3x+5 \\ v(x) = \sqrt{x} \end{cases}$
 $f \operatorname{est} \operatorname{dérivable} \operatorname{sur} \left[0; +\infty\right[$.

Alors
$$f' = u'v + uv'$$
 avec
$$\begin{cases} u'(x) = 3\\ v'(x) = \frac{1}{2\sqrt{x}} \end{cases}$$

On en déduit :
$$f'(x) = 3\sqrt{x} + (3x+5) \times \frac{1}{2\sqrt{x}} = 3\sqrt{x} + \frac{3x+5}{2\sqrt{x}} = \frac{3\sqrt{x} \times 2\sqrt{x} + (3x+5)}{2\sqrt{x}} = \frac{6x + (3x+5)}{2\sqrt{x}} = \frac{9x+5}{2\sqrt{x}}$$
 car $3\sqrt{x} \times 2\sqrt{x} = 3 \times 2 \times (\sqrt{x})^2 = 6x$.

4.
$$f(x) = \frac{2x+5}{3x-7} \operatorname{sur} \mathbb{R} \setminus \left\{ \frac{7}{3} \right\}.$$

 $f = \frac{u}{v} \operatorname{avec} \left\{ \begin{aligned} u(x) &= 2x+5 \\ v(x) &= +x-7 \end{aligned} \right.$
Alors: $f' = \left(\frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \operatorname{avec} \left\{ \begin{aligned} u'(x) &= 2 \\ v'(x) &= 3 \end{aligned} \right.$
Donc: $f'(x) = \frac{2(3x-7) - 3(2x+5)}{(3x-7)^2} = \frac{6x - 14 - 6x - 15}{(3x-7)^2} = \boxed{-\frac{29}{(3x-7)^2}}$

Variations d'une fonction

🕄 Théorème (admis)

Soit f une fonction dérivable sur un intervalle I.

- f est constante sur I si, et seulement si, f' = 0 sur I.
- f est croissante sur I si, et seulement si, f' est strictement positive sur I sauf éventuellement pour un certain nombre fini de valeurs isolées pour lesquelles elle s'annule.
- f est décroissante sur I si, et seulement si, f' est strictement négative sur I sauf éventuellement pour un certain nombre fini de valeurs isolées pour lesquelles elle s'annule.

Exemples:

1. $f(x) = x^2 \operatorname{sur} \mathbb{R}$; f'(x) = 2x qui est négatif $\operatorname{sur} \mathbb{R}^-$ et positif $\operatorname{sur} \mathbb{R}^+$. On en déduit que f est décroissante sur \mathbb{R}^- et croissante sur \mathbb{R}^+ .

2.
$$f(x) = \frac{1}{x} \operatorname{sur} \mathbb{R}^*$$
; $f'(x) = -\frac{1}{x^2} < 0$

2. $f(x) = \frac{1}{x} \operatorname{sur} \mathbb{R}^*$; $f'(x) = -\frac{1}{x^2} < 0$. On en déduit que f est décroissante sur $]-\infty$; 0[; de même que sur]0; $+\infty$.

Remarque: la monotonie a lieu sur des intervalles.

3. $f(x) = \sqrt{x} \operatorname{sur} \mathbb{R}^+$.; f est dérivable $\operatorname{sur} -0$; $= \infty$ [et $f'(x) = \frac{1}{2\sqrt{x}} > 0$ donc la fonction f est décroissante $\operatorname{sur} -0$ $[0; +\infty[$.

4.

Soit *f* la fonction définie par : $f(x) = x^3$ définie sur \mathbb{R} .

$$f'(x) = 3x^2 > 0$$
 pour $x \ne 0$ et $f'(x) = 0$ pour $x = 0$.

On en déduit que la fonction f est strictement croissante sur $\mathbb R$.

La courbe \mathcal{C}_f admet une tangente horizontale en 0.

