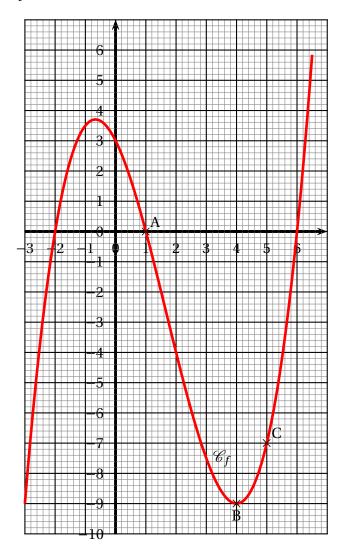
Maths spécifiques : correction de la feuille d'exercices nº 2

Exercice I

On considère une fonction f et sa courbe représentative \mathscr{C}_f . On place les points A, B et C d'abcisses respectives 1 ; 4 et 5. Graphiquement, in trouve :

- a) f(1) = 0
 - f(4) = -9
 - f(5) = -7
- b) f'(1) < 0 (tangente de coefficient directeur négatif, car la fonction affine correspondant est décroissante)
- c) f'(4) = 0 (tangente horizontale)
- d) f'(5) > 0
- e) Il y a deux tangentes horizontales à la courbe.
- f) Les solutions de l'équation f'(x) = 0 sont $x_1 \approx -1, 6$ et $x_2 = 4$.



Exercice II

On considère la fonction f définie par :

$$f(x) = -x^2 + 4x.$$

1)	x	1,9	1,91	1,92	1,93	1,94	1,95	1,96	1,97	1,98	1,99	2
	f(x)	3,9900	3,9919	3,9936	3,9951	3,9964	3,9975	3,9984	3,9991	3,9996	3,9999	4,0000
	f(x) - f(2)	-	-	-	-	-	-	-	-	-	-	0
		0,0100	0,0081	0,0064	0,0049	0,0036	0,0025	0,0016	0,0009	0,0004	0,0001	
	$\frac{(f(x)-f(2))}{x-2}$	0,1000	0,0900	0,0800	0,0700	0,0600	0,0500	0,0400	0,0300	0,0200	0,0100	

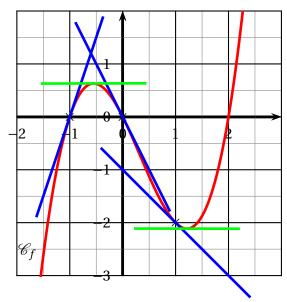
2) On conjecture que f'(2) = 0

Exercice III

On considère la fonction g dont la courbe est donnée ci-dessous.

De plus, on sait que : g'(-1) = 3; g'(0) = -2 et g'(1) = -1.

- 1) Placer les points d'abscisses –1; 0 et 1.
- 2) Tracer les tangentes en chacun de ces trois points.
- 3) Tracer les tangentes horizontales à la courbe.



Exercice IV Vérifier un résultat

Soit f une fonction et \mathcal{C}_f sa courbe représentative.

Quelles sont les assertions justes?

- a) Si f'(0) = 4, alors la tangente à \mathcal{C}_f au point d'abscisse 4 est horizontale. **FAUX** : c'est la tangente en 0 qui est horizontale.
- b) Si f'(3) = -2, alors la tangente au point d'abscisse 3 a pour coefficient directeur -2. **VRAI**
- c) Si f'(-1) = 0, alors la tangente au point d'abscisse -1 est horizontale. **VRAI**
- d) Si f'(2) = 1, alors la tangente au point d'abscisse 1 a pour coefficient directeur 2. **FAUX** : c'est la tangente au pout d'abscisse 2 qui a pour coefficient directeur 1.