Mathématiques spécifiques : dérivation globale : correction de la feuille d'exercices nº 2

Exercice I

Soit *h* la fonction définie sur [0; 1] par :

$$h(x) = -5x^3 - x.$$

1)
$$h'(x) = -5 \times 3x^2 - 1 = -15x^2 - 1$$

2)
$$h'(x) = -[15x^2 + 1] < 0$$

3) On en déduit que *h* est décroissante sur [0; 1].

Exercice II

Un professeur a demandé à ses élèves d'étudier les variations de la fonction g définie sur [0; 9] par g(x) =3x-12.

Voilà la réponse d'un élève :

$$g(x) > 0 \iff 3x - 12 > 0 \iff 3x > 12 \iff x > 4$$
.

x	0	4	9
Signe de $g(x)$	_	0	+
Variation de $g(x)$. /	

Cet élève a confondu le signe de g' et celui de g.

Exercice III

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x^3 - 3x^2 - 9x + 7.$$

1)
$$f'(x) = 3x^2 - 6x - 9$$
.

$$(3x-9)(x+1) = 3x^2 + 3x - 9x - 9 = 3x^2 - 6x - 9.$$
Donc
$$f'(x) = (3x-9)(x+1) = 3(x-3)(x-1).$$

Donc
$$f'(x) = (3x-9)(x+1) = 3(x-3)(x-1)$$

2)
$$f'(x)$$
 s'annule pour $x = 1$ ou $x = 3$.

x	$-\infty$	1	3	$+\infty$
3x-9	+	_	0	+
x-1	+	0 –		+
f'(x)	+	0 –	0	+
f(x)	,	-4	_20	1

3) Variations dans le tableau précédent.

Exercice IV

On injecte un médicament à un malade.

La quantité de substance, exprimée en cm³, présente dans le sang du malade à l'instant t, exprimé en heures, est donnée par la fonction f définie sur [0; 12] par : $f(t) - 0.02t^3 - 0.48t^2 + 2.88t$.

1)
$$f'(t) = 0.06t^2 - 0.96t + 2.88$$

Or $(0.06t - 0.24)(t - 12) = 0.06t^2 - 0.72t - 0.24t + 2.88 = 0.06t^2 - 0.96t + 2.88 = f'(t)$

t	0 4	12
0,06t-0,24	- () +
t – 12	_	- ø
f'(t)	+ () – (
f(t)		

3) La quantité de substance présente dans le sang commence à diminuer au bout de 4 heures.

Exercice V

2)

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 4x^3 - 2x^2 + 1$.

1)
$$f'(x) = 12x^2 - 4x = 4x(3x - 1)$$

2)
$$f'(x) = 0$$
 pour $x = 0$ ou $x = \frac{1}{3}$

3) On en déduit que la courbe \mathscr{C}_f a deux tangentes « horizontales », c'est-à-dire de coefficient directeur 0 : une au point d'abscisse 0 et une au point d'abscisse $\frac{1}{3}$.

Exercice VI

Un artisan produit des vases en terre cuite. Sa capacité de production est limitée à 60 vases.

Le coût de production, en euros, dépend du nombre de vases produits et peut être modélisé par la fonction C définie sur l'intervalle [0; 60] par $C(x) = x^2 - 10x + 500$. Un vase est vendu $50 \in$.

Les recettes, qui dépendent du nombre de vases produits et vendus, sont modélisées par une fonction *R* définie sur [0; 60].

1) C(50) = 2500, donc le coût de production de 50 vases est $2500 \in$.

La recette est de 50 €par vase, donc elle est égale à 2500 €.

2)
$$R(x) = 50x$$

3) Le résultat, en euros, réalisé par l'artisan est modélisé par la fonction B définie sur l'intervalle [0; 60] par B(x) = R(x)-C(x).

a)
$$B(x) = 50x$$
.
 $B(x) = 50x - (x^2 - 10x + 500)$.
Donc $B(x) = -x^2 + 60x - 500$.
Or $-(x - 10)(x - 50) = -(x^2 - 10x - 50x + 500) = -x^2 + 60x - 500 = B(x)$.

b) Tableau de signes :

x	0	1	0	5	0	60
x + 10	+	- () –	-	•	_
x - 50	-	-	- () -	H	
B(x)	-	- () +	- () -	_

Le bénéfice est positif lorsque l'artisan produit et vend entre 10 et 50 vases.

4) On note B' la fonction dérivée de la fonction B sur l'intervalle [0; 60].

a)
$$B'(x) = -2x + 60$$

b)
$$B'(x) = 0 \iff x = 30$$

х	0 30	60
B'(x)	+ 0	_
B(x)		
B(x)		

L'artisan doit produire 30 vases afin de réaliser un bénéfice maximum.