Correction du QCM sur les équations et inéquations (avec justifications)

Exercice 1 (1 point)

L'équation 2x + 5 = 0 équivaut à 2x = -5.

Exercice 2 (1 point)

3x + 2 = 7 équivaut à 3x = 7 - 2

Exercice 3 (1 point)

L'équation 3x + 7 = 0 a pour solution le nombre $x = -\frac{7}{2}$

Exercice 4 (1 point)

L'équation 7x + 3 = -5 a pour solution le nombre $-\frac{8}{7}$

Exercice 5 (2 point)

$$5 \times \left(-\frac{3}{5}\right)^2 + 13 \times \left(-\frac{3}{5}\right) + 6 = \frac{9}{5} - \frac{39}{5} + 6 = -6 + 6 = 0 \text{ donc une}$$
 solution de l'équation $5x^2 + 13x + 6 = 0$ est $-\frac{3}{5}$.

Exercice 6 (1 point)

 $2x+3 < 0 \Leftrightarrow 2x < -3 \Leftrightarrow x < -\frac{3}{2}$ donc l'ensemble des solutions

Exercice 7 (2 points)

L'ensemble des solutions de l'équation

$$(2x+3)(3x-2) = 0$$
 est: $\mathscr{S} = \left\{ -\frac{3}{2}; \frac{2}{3} \right\}$

Exercice 8 (2 points)

$$(x+8)(7x+3) = (x+8)(3x+2)$$

$$\Leftrightarrow (x+8)(7x+3) - (x+8)(3x+2) = 0$$

$$\Leftrightarrow$$
 $(x+8)[(7x+3)-(3x+2)]=0$

$$\Leftrightarrow (x+8)(7x+3-3x-2) = 0$$

$$\Leftrightarrow (x+8)(4x+1) = 0.$$

L'ensemble des solutions est : $\mathscr{S} = \left\{ -8; -\frac{1}{4} \right\}$

$$\mathcal{S} = \left\{ -8 \; ; \; -\frac{1}{4} \right\}$$

Exercice 9 (1 point)

$$2x+5 \geqslant 5x-1 \Leftrightarrow 2x-5x \geqslant -1-5 \Leftrightarrow -3x \geqslant -6$$

$$\Leftrightarrow x \leqslant \frac{-6}{-3} = 2 \Leftrightarrow x \leqslant 2.$$

L'ensemble des solutions est $\mathscr{S} =]-\infty$; 2]

Exercice 10 (2 points)

Le signe de 2x - 3 est donné par le tableau de signe :

$$\begin{array}{c|c} x & -\infty & \frac{3}{2} & +\infty \\ 2x - 3 & -\phi + \end{array}$$

Exercice 11 (2 points)

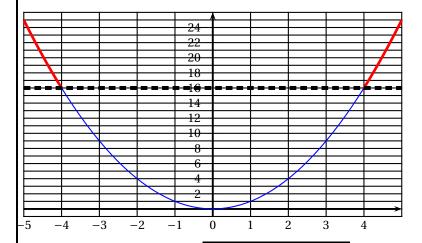
Résolvons l'inéquation (-5x + 1)(2x + 3) > 0 en renseignant un tableau de signes :

x	$-\infty$ -	$\frac{3}{2}$	l - +∞
-5x + 1	+	+ () —
2x + 3	- () +	+
(-5x+1)(2x+3)	- () + () —

L'ensemble des solutions est $\mathscr{S} =$

$$\mathcal{S} = \left] -\frac{3}{2}; \frac{1}{5} \right[$$

Exercice 12 (2 points)


On cherche le signe de $\frac{x-1}{5-x}$. On remarque que 5 est une valeur interdite donc on doit avoir une double-barre sous le nombre 5; les valeurs qui annulent le numérateur et le dénominateur sont 1 et 5.

Le tableau de signes qui permet de répondre est :

х	-∞]	l 5	5 +∞
<i>x</i> – 1	_	+	+
5-x	+	+	_
$\frac{x-1}{5-x}$	- () +	_

Exercice 13 (2 points)

Quel est l'ensemble des solutions de l'inéquation $x^2 - 16 > 0$? Graphiquement, on cherche les abscisses des points de la parabole représentative de la fonction carré dont les ordonnées sont supérieures à 16.

Autre façon : $x^2 - 16 > 0 \Leftrightarrow (x+4)(x-4) > 0$ et on renseigne un tableau de signes:

L'ensemble des solutions est $|\mathcal{S}| = |-\infty; -4[\cup]4; +\infty[$

х	$-\infty$ -	4 4	1 +∞
<i>x</i> + 4	- (+	+
x-4	ı	- () +
(x+4)(x-4)	+ () – () +