FONCTIONS POLYNÔMES DE DEGRÉ DEUX-FONCTIONS HOMOGRAPHIQUES

Table des matières

I	Fonction polynôme du second degré			
	I.1	Définitions	1	
	I.2	Variations et représentation graphique	2	
II	Fonct	tions homographiques		
	II 1	Définition	4	

I Fonction polynôme du second degré

I.1 Définitions

On appelle fonction **polynôme du second degré** toute fonction P définie sur $\mathbb R$ de la forme

$$P(x) = ax^2 + bx + c$$

o \ddot{a} , b et c sont des réels appelés coefficients avec $a \neq 0$.

Exemples: Exemples de fonctions polynômes du second degré

fonctions polynôme de degré 2	coefficients
$P(x) = 2x^2 - 5x + 3$	a = 2, b = -5, c = 3
$P(x) = -x^2 + 3$	a = -1, b = 0, c = 3
$P(x) = -7x^2 + 3x$	a = -7, b = 3, c = 0

Définition

Une expression de la forme $f(x) = a(x - \alpha)^2 + \beta$ avec $a \neq 0$ s'appelle la **forme canonique** d'un polynôme de degré 2.

Toute fonction polynôme de degré 2 admet une forme canonique.

On a :
$$\alpha = -\frac{b}{2a}$$
 et $\beta = f(\alpha)$

Démonstration:

$$ax^{2} + bx + c = a\left(x^{2} - \frac{b}{a}\right) + c = a\left[\left(x - \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c = a\left(x - \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c = a\left(x - \frac{b}{2$$

On appelle discriminant l'expression : $\Delta = b^2 - 4ac$.

Par conséquent :
$$ax^2 + bx + c = a\left[x - \left(-\frac{b}{2a}\right)\right]^2 - \frac{b^2 - 4ac}{4a} = a(x - \alpha)^2 + \beta$$
 avec
$$\begin{cases} \alpha = -\frac{b}{2a} \\ \beta = -\frac{\Delta}{4a} = f(\alpha) \end{cases}$$

Exemples:

Exerc1ce 1 Soit
$$P(x) = 2x^2 - 4x + 5 = ax^2 + bx + c$$
 avec $a = 2$, $b = -4$ et $c = 5$.

On a
$$\alpha = -\frac{b}{2a} = -\frac{-4}{2 \times 2} = 1$$

$$\beta = P(\alpha) = P(1) = 3$$

Par conséquent $P(x) = a(x - \alpha)^2 + \beta = 2(x - 1)^2 + 3$.

Exerc2ce 2
$$P(x) = -5x^2 + 2x - 7 = ax^2 + bx + c$$
 avec $a = -5$, $b = 2$ et $c = -7$.

$$\alpha = -\frac{b}{2a} = -\frac{2}{2 \times (-5)} = \frac{1}{5}$$

$$\beta = P(\alpha) = P\left(\frac{1}{5}\right) = -5 \times \left(\frac{1}{5}\right)^2 + 2 \times \frac{1}{5} - 7 = -\frac{34}{5}.$$

On en déduit
$$P(x) = -5\left(x - \frac{1}{5}\right)^2 - \frac{34}{5}$$

I.2 Variations et représentation graphique

La fonction polynôme de degré 2 définir sur] $-\infty$; $+\infty$ [est :

- strictement décroissante sur $]-\infty$; α] puis strictement croissante sur $[\alpha; +\infty[$ **si** a>0,
- strictement croissante sur] $-\infty$; α] puis strictement décroissante [α ; $+\infty$ [si α < 0,

Démonstration dans le cas a > 0: Sur $[\alpha; +\infty[$:

On prend deux nombres x_1 et x_2 avec $\alpha \le x_1 \le x_2$.

 $\alpha \le x_1 \le x_2 \Rightarrow 0 \le x_1 - \alpha \le x_2 - \alpha \Rightarrow 0 \le (x_1 - \alpha)^2 \le (x_2 - \alpha)^2$ (car la fonction carré est croisante sur $[0; +\infty[)]$

On en déduit $0 \le 0 \le a(x_1 - \alpha)^2 \le a(x_2 - \alpha)^2$ puis $\beta \le a(x_1 - \alpha)^2 + \beta \le a(x_2 - \alpha)^2 \beta$.

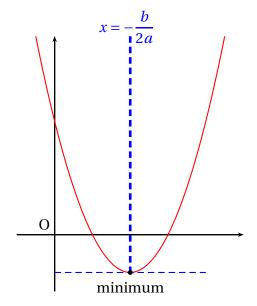
Les images sont classées sdan sel même ordre que les antécédents, donc la fonction f est croissante sur $[\alpha + \infty[$.

Démonstration analogue sur $]-\infty$; $\le alpha$] et dans le cas où a < 0

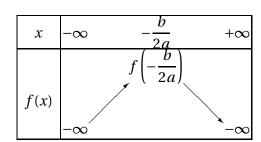
Tableau de variations et représentation graphique :

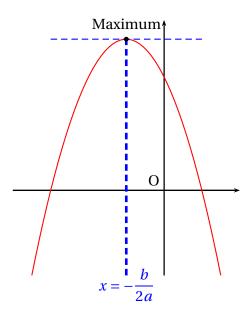
a > 0

х	$-\infty$ -	$-\frac{b}{2a}$ + ∞	S
f(x)	+∞ f($\left(-\frac{b}{2a}\right)$	O



a < 0





Dans un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, la courbe représentative d'une fonction polynôme de degré 2 est une **parabole** Cette parabole admet un **axe de symétrie** parallèle à l'axe des ordonnées.

II Fonctions homographiques

II.1 Définition

On appelle fonction homographique toute fonction de la forme $x \mapsto \frac{ax+b}{cx+d}$ où a, b, c et d sont des réels avec $c \neq 0$ et $ad-bc \neq 0$.

Propriété

L'ensemble de définition de la fonction $f: x \mapsto \frac{ax+b}{cx+d}$ est $\mathbb{R} \setminus \left\{-\frac{d}{c}\right\}$.

Exemple: soit
$$f: x \mapsto \frac{2x+3}{7x+3}$$
.

f est bien homographique et l'ensemble de définition est $\mathbb{R} \setminus \left\{-\frac{3}{7}\right\}$.

Définition

La courbe représentative d'une fonction homographique est une hyperbole, constituée de deux branches.

Pour la fonction $f: x \mapsto \frac{2x+3}{7x+3}$, la courbe représentative est :

