Ι

a) Soit l'équation : (x-1)(2+x) + (x+5)(1-x) = 0...

L'ensemble de définition est \mathbb{R} .

On remarque que 1 - x = -(x - 1) donc l'équation équivaut à :

$$(x-1)(2+x) + (x+5) \times (-1) \times (x-1x) = 0. \Leftrightarrow (x-1)(2+x) - (x+5)(x-1) = 0 \Leftrightarrow (x-1)[(2+x) - (x+5)] = 0 \Leftrightarrow (x-1) \times (2+x-x-5) = 0 \Leftrightarrow -3(x-1) = 0 \Leftrightarrow x-1 = 0.$$

On en déduit x = 1 donc l'ensemble des solutions est $\mathscr{S} = \{1\}$

b) Soit l'équation $(x+3)^2 = x+3$.

L'ensemble de définition est \mathbb{R} .

$$(x+3)^2 = x+3 \Leftrightarrow (x+3)^2 - (x+3) = 0 \Leftrightarrow (x+3)(x+3-1) = 0 \Leftrightarrow (x+3)(x+2) = 0$$

Un produit de facteurs dans ℝ est nul si, et seulement si, l'un des facteurs est nul.

On en déduit x = -3 ou x = -2. L'ensemble des solutions est $\mathscr{G} = \{-3 - 2\}$.

c) Soit l'équation $\frac{x^2 + x + 1}{2x - 3} = \frac{1}{2}$. **Ensemble de définition :** Il faut que $2x - 3 \neq 0$.

Or $2x - 3 = 9 \Leftrightarrow x = \frac{3}{2}$ donc l'ensemble de définition est $\mathcal{D} = \mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$.

Pour $x \in \mathcal{D}$, $\frac{x^2 + x + 1}{2x - 3} = \frac{1}{2} \Leftrightarrow 2(x^2 + x + 1) = 1 \times (2x - 3)$ (égalité des produits en croix) $2x^2 + 2x + 2 = 2x - 3 \Leftrightarrow 2x^2 = -5$.

 $2x^2 \ge 0$ pour tout x et -5 < 0 donc c'est impossible ou $x^2 = -\frac{5}{2} < 0$ et le carré d'un réel ne peut pas être

IL n'y a aucune solution à cette équation : $\mathscr{S} = \emptyset$

d) Soit l'équation $\frac{2}{3r-1} - \frac{3x}{3r+1} = \frac{4}{9r^2-1} - 1$.

Ensemble de définition : il faut que les dénominateurs ne s'annulent pas. :

- $3x 1 = 0 \Leftrightarrow x = \frac{1}{2}$
- $3x + 1 = 0 \Leftrightarrow x = -\frac{1}{3}$
- $9x^2 1 = 0 \Leftrightarrow (3x)^2 1^2 = 0 \Leftrightarrow (3x+1)(3x-1) = 0 \Leftrightarrow x \in \left\{-\frac{1}{3}; \frac{1}{3}\right\}.$

L'ensemble de définition est : $\mathscr{D} = \mathbb{R} \setminus \left\{ -\frac{1}{3}; \frac{1}{3} \right\}$.

Alors, pour $x \in \mathcal{D}$:

$$\frac{2}{3x-1} - \frac{3x}{3x+1} = \frac{4}{9x^2-1} - 1 \Leftrightarrow \frac{2}{3x-1} - \frac{3x}{3x+1} - \frac{4}{9x^2-1} + 1 = 0$$

$$\Leftrightarrow \frac{2}{3r-1} - \frac{3r}{3r+1} - \frac{1}{(3r+1)(3r-1)} + 1 = 0$$

$$\Leftrightarrow \frac{2(3x+1)-3x(3x-1)-4+(3x+1)(3x-1)}{} = 0$$

Alors, pour
$$x \in \mathcal{D}$$
:
$$\frac{2}{3x-1} - \frac{3x}{3x+1} = \frac{4}{9x^2-1} - 1 \Leftrightarrow \frac{2}{3x-1} - \frac{3x}{3x+1} - \frac{4}{9x^2-1} + 1 = 0$$

$$\Leftrightarrow \frac{2}{3x-1} - \frac{3x}{3x+1} - \frac{4}{(3x+1)(3x-1)} + 1 = 0$$

$$\Leftrightarrow \frac{2(3x+1) - 3x(3x-1) - 4 + (3x+1)(3x-1)}{(3x+1)(3x-1)} = 0$$

$$\Leftrightarrow \frac{6x+2-9x^2+3x-4+9x^2-1}{(3x+1)(3x-1)} = 0 \Leftrightarrow \frac{9x-3}{(3x+1)(3x-1)} = 0 \Leftrightarrow 9x-3 = 9 \Leftrightarrow 3(3x-1) = 0 \Leftrightarrow x = \frac{1}{3} \notin \mathcal{D}.$$

La solution qu'on trouve est une valeur interdite, donc l'équation n'a pas de solution. $\boxed{\mathscr{S} = \emptyset}$

II

1. Soit l'inéquation $x < \frac{1}{x}$.

L'ensemble de définition est
$$\boxed{\mathscr{D} = \mathbb{R}^*}$$
.
Pour $x \in \mathscr{D}$, $x < \frac{1}{x} \Leftrightarrow x - \frac{1}{x} < 0 \Leftrightarrow \frac{x^2 - 1}{x} < 0 \Leftrightarrow \frac{(x+1)(x-1)}{x} < 0$.
On renseigne alors un tableau de signes :

x	$-\infty$ -	1 ()]	l +∞
x+1	- 0) +	+	+
x+1	_	_	- () +
X	_	_	+	+
$\frac{(x+1)(x-1)}{x}$	— ф) +	- () +

L'ensemble des solutions de cette inéquation est $\mathscr{S} =]-\infty$; $-1[\cup]0$; 1[

2. Soit l'inéquation $\frac{1}{x-2} < \frac{2}{x+3}$. L'ensemble de définition est $\mathcal{D} = \mathbb{R} \setminus \{-3; 2\}$.

Alors, pour $x \in \mathcal{D}$:

$$\frac{1}{x-2} < \frac{2}{x+3} \Leftrightarrow \frac{1}{x-2} - \frac{2}{x+3} < 0 \Leftrightarrow \frac{(x+3)-2(x-2)}{(x-2)(x+3)} < 0 \Leftrightarrow \frac{x+3-2x+4}{(x-2)(x+3)} < 0 \Leftrightarrow \frac{-x+7}{(x-2)(x+3)} < 0.$$

On renseigne un tableau de signes:

$$-x + 7 = 0 \Leftrightarrow x = 7$$
.

x	$-\infty$ -3 2 7 $+\infty$				
-x+7	+	+	+ () —	
x-2	_	_	+	+	
<i>x</i> + 3	_	+	+	+	
$\frac{-x+7}{(x-2)(x+3)}$	+	_	+ () –	

On voulait que l'expression fût négative.

L'ensemble des solutions est $\mathscr{S} =]-3$; $3[\cup]7 + \infty[$

Ш

Une casserole cylindrique a un diamètre de 18 cm. Sa contenance est être 2 et 3 litres.

Le rayon r vaut 9 cm.

Soit *h* la hauteur en cm.

1 L = 1000 cm3.

Le volume d'un cylindre est $V = \pi r^2 h$.

On doit donc avoir : $2000 \le \pi \times 9^2 h \le 3000$, d'où :

$$\frac{2000}{81\pi} \leqslant h \leqslant \frac{3000}{81\pi}$$

IV

Le tableau suivant résume les résultats obtenus par la classe de seconde C d'un lycée lors d'un devoir de mathématiques.

Notes	3	5	6	7	8	9	10	11	12	13	14	17	18
Effectifs	1	2	1	3	3	5	6	4	2	1	2	2	1
Effectifs cumulés croisants	1	3	4	7	10	15	21	25	27	28	30	32	33

- 1. On complète le tableau avec la ligne des effectifs cumulés croissants.
 - L'effectif total est de 33, donc il y a 33 élèves dans cette classe.
 - L'étendue est la différence entre les valeurs extrêmes, soit 18-3=15
- 2. On voit dans le tableau qu'il y a 10 élèves ayant une note inférieure ou égale à 8, donc une fréquence de $\frac{10}{33}$, c'est-à-dire un pourcentage d'environ 30,3%.
- 3. À la calculatrice, on trouve que la moyenne \overline{x} vaut 10, la médiane M vaut 10, le premier quartile Q_1 vaut 8 et le troisième quartile Q_3 vaut 11,5 (alors que d'après la définition du cours, le troisième quartile est une valeur de la série et vaut 11).
- 4. L'effectif total est 33 ; $33 = 2 \times 16 + 1$ (nombre impair) ; la médiane est alors la 17^{e} valeur de la série, donc M = 10
- 5. Soit *x* la note de Bastien obtenue à ce devoir.
 - Il avait auparavant 9 de moyenne avec trois notes, donc la somme de ses trois premières notes était de $3 \times 9 = 27.$
 - Sa nouvelle moyenne est $\frac{27+x}{4} = 9.5$ donc 27+x = 38 d'im x = 11. Bastien a eu 11 lors du quatrième contrôle.
- 6. Dans le lycée, les trois autres classes de seconde ont effectué le même devoir. Les moyennes par classe obtenues sont les suivantes :

Classes	Seconde A	Seconde B	Seconde C	Seconde D
Moyennes de chaque classe	8	11	10	8,5
Effectifs de chaque classe	34	n	33	32

On commence par compléter avec les valeurs trouvées précédemment pour la seconde C.

La moyenne du lycée vaut alors:

$$\frac{(8\times34) + (11\times n) + (33\times10) + (32\times8,5)}{34+n+33+32} = \boxed{\frac{874+11n}{101+n}}.$$

Cette moyenne vaut 9,28 donc $\frac{874 + 11n}{101 + n} = 9,28$. On en déduit 874 + 11n = 9,28(101 + n) = 937,28 + 9,28n d'où 1,72n = 63,28 qui donne $n = \frac{63,28}{1,72} \approx 36,8$. Un nombre d'élèves est un nombre entier, donc n = 37 et la moyenne n'était pas exactement de 0.20 sis 0.00 \ 0.00 moyenne n'était pas exactement de 9,28, sis 9,28 à 0,01 près.

Pour n = 37, on trouve une moyenne égale à $\frac{1281}{138} = \frac{427}{46} \approx 9,2826$.

Il y a 37 élèves dans cette classe.

7. On effectue un regroupement en classes des notes des élèves de seconde C. Compléter le tableau suivant:

	Notes	[0;5[[5;8[[8;10[[10; 12 [[12; 15 [[15;20]
Γ	Effectifs	1	6	8	10	5	3

8. La moyenne vaut alors:

On obtient une moyenne légèrement supérieure à la moyenne réelle.
$$\frac{(2,5\times1)+(6,5\times6)+(9\times8)+(11\times10)+(13,5\times5)+(17,5\times3)}{33}=\frac{343,5}{33}\approx10,4.$$

V

- 1. $AM = x \text{ donc } | x \in [0; 8] |$
- 2. (a) L'aire de carré AMNP est $\mathscr{A}(AMNP) = x^2$
 - (b) L'aire de MBQ est $\mathcal{A}(MBQ) = \frac{(8-x)\times 8}{2} = \boxed{\frac{4(8-x)}{2}}.$
 - (c) L'aire du carré est supérieure à celle du triangle si, et seulement si,

$$x^2 \geqslant 4(8-x).$$

- 3. On se propose de résoudre graphiquement cette inéquation, à l'aide de la courbe $\mathscr C$ cicontre qui représente la fonction carré $f: x \mapsto x^2$.
 - (a) Soit g la fonction définie sur \mathbb{R} par

$$g(x) = 4(8 - x)$$
.

g est une fonction affine, dont le représentation graphique est une droite.

- (b) Pour représenter la droite représentative de g, il suffit de trouver deux points ou un point et d'utiliser le coefficient directeur qui est -4. Il est facile de voir que l'ordonnée à l'origine est 32, donc la droite passe par le point de coordonnées (0; 32) et g(8) = 0donc la droite passe par le point de coor-
- (c) Les solutions de l'inéquation sont les abscisses des points pour lesquels $\mathscr C$ est audessus de la droite, donc pour $x \in [4; 8]$.

données (8; 0).

- 4. (a) Pour tout x, $x^2 4(8 x)$ $= x^2 - 32 + 4x = x^2 + 4x - 32.$ $(x-4)(x+8) = x^2+8x-4x-32 = x^2+4x-32$; C'est la même forme développée, donc, pour tout x, $x^2 - 4(8 - x) = (x - 4)(x + 8)$.
 - (b) $x^2 \ge 4(8-x) \Leftrightarrow x^2 4(8-x) \Leftrightarrow (x-4)(x+8) \ge$ 0 d'après la question précédente.

Pour résoudre cette inéquation, on renseigne alors jun tableau de signes. x - 4 s'annule et change de signe pour x = 4; x + 8 est toujours positif sur l'intervalle [0; 8].

X	0 4	1 8
x-4	- () +
<i>x</i> + 8	+	+
(x-4)(x+8)	- () +

L'ensemble des solutions est donc $\mathcal{S} = [4; 8]$ (on retrouve ce que l'on avait trouvé graphiquement).

(c) L'aire du carré est supérieure à l'aire du triangle lorsque M décrit la deuxième moitié de l'intervalle [AB] (en partant de A)?

