Exercices sur les intervalles

Exercice I

On a vu en cours que :

- $x \in [4; 5]$ se traduit par : $4 < x \le 5$
- $x \in [7; +\infty[$ se traduit par : $7 \le x$ ou $x \ge 7$.

Traduire les appartenances suivantes à l'aide d'inégalités :

- a) $x \in [-7; 3]$
- b) $x \in]0; 5]$
- c) $x \in]1; 7[$
- d) $x \in]-\infty$; 8]
- e) $x \in [-5; +\infty[$
- f) $x \in [2; 11[$

Exercice II

Écrire les inégalités suivantes à l'aide d'appartenance à un intervalle. (voir exercice précédent)

- a) $-5 < x \le 7$
- b) 12 > x
- c) $x \ge -3$
- d) $1 \le x \le 8$
- e) 0 < x
- f) $-2 \le x < 3$

Exercice III

Dans chaque cas, déterminer $I \cap J$ et $I \cup J$:

- a) I =]2; 6] et J = [-3; 5[
- b) I = [2; 6] et $J = [-\infty; 3]$
- c) I = [-7; -1[et J = [-5; 6[
- d) $I =]-\infty$; 5] et $J = [-4; +\infty[$
- e) $I =]7; +\infty[$ et $J = [-4; +\infty[$
- f) I =]-4; 7] et $J =]-\infty$; 2[
- g) I =]-5; 2[et $J = [2; +\infty[$ (bien lire!)

Exercice IV

Inégalités	phrase	appartenance à un intervalle ou à une réunion d'intervalles	Représentation graphique (en hachurant la partie non solution)
x < 3			
-2 < x < 7			
		$x \in]-\infty; -3[\cup]6; +\infty[$	
			///} -1 0
	x est supérieur ou égal -5 et strictement inférieur à 1		