Définition

Définition

La racine carrée d'un nombre positif a est le nombre positif, noté \sqrt{a} , dont le carré vaut a.

Autrement dit : < $\sqrt{a} \ge 0$

Exemple: $\sqrt{7 > 0}$ et $\left(\sqrt{7}\right)^2 = 7$

Exercice I

Calculer:

$$a = \sqrt{9}$$

$$b = \sqrt{25}$$

$$c = \sqrt{0}$$

$$d = \sqrt{1}$$

$$e = \sqrt{(-3)^2}$$

$$f = \sqrt{2}$$

Racine carrée d'un produit ou d'un quotient

Propriété

Soient deux nombres *a* et *b* positifs.

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 si $b \neq 0$

• Il n'y a aucune règle pour l'addition ou la soustraction.

Exemple: $\sqrt{9+16} = \sqrt{25} = 5$ et $\sqrt{9} + \sqrt{16} = 3 + 4 = 7$ donc $\sqrt{9+16} \neq \sqrt{9} + \sqrt{16}$

Exercice II

Calculer:

$$A = \sqrt{2} \times \sqrt{18}$$

$$B = \sqrt{3} \times \sqrt{27}$$

$$C = \frac{\sqrt{54}}{\sqrt{6}}$$

$$D = \frac{\sqrt{8}}{\sqrt{2}}$$

Simplification de racines carrées

Propriété

Soient deux nombres *a* et *b* positifs.

Alors :
$$\sqrt{a^2b} = a\sqrt{b}$$

$$\operatorname{car} \sqrt{a^2 b} = \sqrt{a^2} \times \sqrt{b} = a\sqrt{b}$$

Exemple:
$$\sqrt{18} = \sqrt{9 \times 2} = \sqrt{3^2 \times 2} = \boxed{3\sqrt{2}}$$

Exercice III

Simplifier:

$$A = \sqrt{50}$$

$$B = \sqrt{8}$$

$$C = \sqrt{32}$$

$$D = \sqrt{48}$$

$$E = \sqrt{3} \times \sqrt{6}$$

$$F = \sqrt{5} \times \sqrt{20}$$

$$G = \sqrt{3} \times \sqrt{6} \times \sqrt{8}$$

Exercice IV

Simplifier:

$$A = 2\sqrt{20} - \sqrt{45} + \sqrt{125}$$

$$B = 7\sqrt{3} - 3\sqrt{48} + 5\sqrt{12}$$

Exercice V

Calculer:

$$D = 1 - \left(\sqrt{2001} + \sqrt{2000}\right) \times \left(\sqrt{2001} - \sqrt{2000}\right).$$

Exercice VI

Soient $C = \sqrt{18} \times \sqrt{9}$ et $D = 5\sqrt{12} + 6\sqrt{3} - \sqrt{300}$. Écrire C et D sous forme $a\sqrt{3}$, où a est un entier.