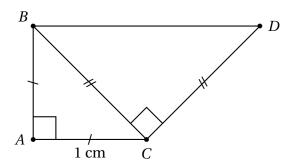
## 2<sup>nde</sup>: feuille de TD nº 1

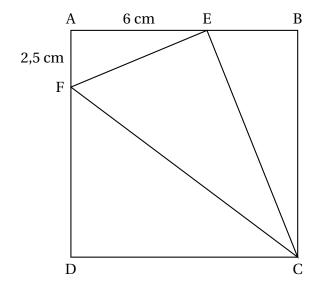

# (révisions sur le théorème de Pythagore et les calculs de puissances)

#### **Exercice I**

- a) On considère le triangle TGV , rectangle en G où GT=54 mm et GV=72 mm. Calculer la valeur exacte de TV.
- b) On considère le triangle TER rectangle en E où ER = 60 mm et TR = 65 mm. Calculer la valeur exacte de TE.
- c) On considère le triangle YUV tel que YU = 65 mm, YV = 72 mm et UV = 97 mm. Ce triangle estil rectangle?

#### **Exercice II**

On considère la figure suivante :




Calculer la longueur BD.

#### **Exercice III**

On considère la figure ci-dessous dans laquelle ABCD est un carré de côté  $10~\rm cm$ .

- 1. Calculer EF, EC et FC.
- 2. Le triangle FEC est-il rectangle?



### **Exercice IV** Calculs sur les puissances



### Rappels sur les règles de calculs

a et b sont des réels, n et p sont des entiers naturels.

tures.  

$$a^{n} \times a^{p} = a^{n+p}$$
  $\frac{a^{n}}{a^{p}} = a^{n-p}$   
 $\frac{1}{a^{n}} = a^{-n}$   $(ab)^{n} = a^{n}b^{n}$   $(a^{n})^{p} = a^{np}$ 

Simplifier les écritures suivantes :

$$a = 2^{5} \times 2^{6}$$
 $b = (-7)^{2} \times (-7)^{4}$ 
 $c = (-8)^{4} \times 8^{7}$  (on remarquera que  $-8 = (-1) \times 8$ )
 $d = (-3)^{4} \times (-5)^{4}$ 
 $e = \frac{7^{6}}{7^{2}}$ 
 $f = (2^{5})^{7}$ 

#### **Exercice V**

**Rappel** : un nombre est en notation scientifique lorsqu'il est écrit sous la forme  $\pm a \times 10^n$  avec  $1 \le a < 10$  et  $n \in \mathbb{Z}$ .

Écris les nombres suivants en notation scientifique :

$$i = 345 \times 10^{7}$$
 $i = 0.005 \times 10^{-7}$