
Correction des exercices sur les variations d'une fonction

Exercice I

Voici la courbe représentative d'une fonction f.

- 1. l'ensemble de définition de cette fonction est $\mathcal{D}_f = [-4; 6]$
- 2. Tableau de variation:

х	-4	-1	1	3	6
f(x)	5	-4	0	-4	5

- 3. Le minimum de f est -4, atteint en x = -1 et x = 1.
 - Le maximum de f est $\boxed{5}$, atteint en x = -4 et x = 6.

Exercice II

Soit une fonction f dont on donne le le tableau de variation ci-dessous.

Х	-10	1	9	15	30
f(x)	-25	33	14	20	-52

- 1. L'ensemble de définition de la fonction est $\mathcal{D}_f = [-10; 30]$
- 2. Le minimum de f est -52, atteint en x = 30.
 - Le maximum de f est 33, atteint en x = 1.
- 3. Sur [-10; 9], le minimum de f est [-25], atteint en x = -10.
 - Sur [-10; 9], le maximum de f est 33, atteint en x = 1.
- 4. Compléter le plus précisément possible les inégalités suivantes :
 - (a) $-25 \le f(-5) \le 33$ car $-5 \in [-10; 1]$ et f est croisante sur cet intervalle donc conserve l'ordre.
 - (b) $-52 \le f(20) \le 20$ car $20 \in [15; 30]$ et f est décroissante sur cet intervalle donc renverse l'ordre, donc $f[30] \le f(20) \le f(15)$.

Exercice III

On considère une fonction f dont le tableau de variation est le suivant :

X	$-\infty$	-2	3	10	16	25	$+\infty$
f(x)		-2	-15	0	13 7	0	*

- a) L'ensemble de définition de la fonction f est $\boxed{\mathscr{D}_f = \mathbb{R}}$
- b) Le maximum de la fonction f sur l'intervalle $]-\infty$; 10] est 0, atteint en x=10.
- c) Puisque le maximum de f est 0 sur m'intervalle]— ; 10, $f(x) \ge 0$ sur cet intervalle (négatif).
- d) Le maximum de la fonction f sur \mathbb{R} est $\boxed{\frac{13}{7}}$ (atteint en x = 16).
- e) $2 = \frac{14}{7} > \frac{13}{7}$; 2 est supérieur au maximum de f donc l'équation f(x) = 2 n'a aucune solution dans \mathbb{R} .
- f) L'équation f(x) = 0 admet deux solutions, x = 10 et x = 25.