Correction des exercices sur les intervalles

Exercice I

Traduire les appartenances suivantes à l'aide d'inégalités :

- a) $x \in [-7; 3]$ équivaut à $-7 \le x \le 3$
- b) $x \in]0$; 5] équivaut à $0 < x \le 5$
- c) $x \in]1; 7[$ équivaut à $\boxed{1 < x < 7}$
- d) $x \in]-\infty$; 8] équivaut à $x \leq 8$
- e) $x \in [-5; +\infty[$ équivaut à $-5 \le x$ ou $x \ge 5$
- f) $x \in [2; 11[$ équivaut à $2 \le x < 11]$

Exercice II

Écrire les inégalités suivantes à l'aide d'appartenance à un intervalle. (voir exercice précédent)

- a) $-5 < x \le 7$ équivaut à $x \in]-5$; 7]
- b) 12 > x équivaut à $x \in]-\infty$; 12[
- c) $x \ge -3$ équivaut à $x \in [-3; +\infty[$
- d) $1 \le x \le 8$ équivaut à $x \in [1; 8]$
- e) 0 < x équivaut à $x \in]0$; $+\infty[$
- f) $-2 \le x < 3$ équivaut à $x \in [-2; 3[$

Exercice III

Dans chaque cas, déterminer $I \cap J$ et $I \cup J$:

- a) I =]2; 6] et J = [-3; 5[
 - $I \cap J = [-3; 2[$ (2 n'appartient pas à I, donc pas à $I \cap J$)
 - $I \cup J = [2; 6]$
- b) I = [2; 6] et $J = [-\infty; 3]$
 - $I \cap J =]2; 3]$
 - $I \cup J =]-\infty$; 6]
- c) I = [-7; -1[et J = [-5; 6[
 - $I \cap J = [-5; -1[$
 - $I \cup J = [-7; 6]$
- d) $I =]-\infty$; 5] et $J = [-4; +\infty[$
 - $I \cap J = [-4; 5]$
 - $\overline{I \cup J} =]-\infty$; $+\infty[$ autrement dit, $\overline{I \cup J} = \mathbb{R}$

e) $I =]7; +\infty[$ et $J = [-4; +\infty[$

• $I \cap J = [-4; 7[$

• $I \cup J = J =]-4$; $+\infty[$ car $I \subset J$

f) I =]-4; 7] et $J =]-\infty$; 2[

• $I \cap J =]-4; 2[$

• $I \cup J =]-\infty$; 7]

g) I =]-5; 2[et $J = [2; +\infty[$ (bien lire!)

• $I \cap J = \emptyset$ car $-2 \notin I$

• $I \cup J =]-5$; $+\infty$ [

Exercice IV

Inégalités	phrase	appartenance à un intervalle ou à une réunion d'intervalles	Représentation graphique (la partie en rouge convient et la partie hachurée ne convient pas)
x < 3	x est strictement inférieur à 3	$x \in]-\infty; 3[$	3
-2 < x < 7	-2 est strictement inférieur à x et x est strictement inférieur à 7	<i>x</i> ∈] −2; 7[//// [///. -2 7
$-1 < x \le 0$	x est strictement supérieur à -1 et x est inférieur ou égal à 0 (ou -1 est strictement inférieur à x)	$x \in]-1;0]$	-1 0
-5 ≤ <i>x</i> < 1	x est supérieur ou égal -5 et strictement inférieur à 1	<i>x</i> ∈ [−5; 1[-///\