Correction des exercices sur l'intersection et la réunion de deux intervalles

Rappel

- L'intersection de I et J, $I \cap J$ est l'ensemble des nombres qui appartiennent à I et à J.
- La réunion de I et J, $I \cup J$ est l'ensemble des nombres qui appartiennent à I ou à J.

Dans chaque cas, déterminer $I \cap J$ et $I \cup J$:

- a) I =]2; 5] et J = [-3; 4[
 - $I \cap J =]2; 4[$
 - $I \cup J = [-3; 5]$
- b) $I =]2; 5] \text{ et } J =]-\infty; 4]$
 - $I \cap J =]2; 4]$
 - $I \cup J =]-\infty$; 5]
- c) I = [-5; -2[et J = [-4; 6[
 - $I \cap J = [-4; -2[$
 - $I \cup J = [-5; 6[$
- d) $I =]-\infty$; 4] et $J = [-5; +\infty[$
 - $I \cap J = [-5; 4]$
 - $I \cup J =]-\infty$; $+\infty$ [donc $I \cup J = \mathbb{R}$
- e) $I =]6; +\infty[$ et $J = [-4; +\infty[$
 - $I \cap J = [-4; 6[$
 - $I \cup J = [-4; +\infty[$
- f) I =]-4; 7] et $J =]-\infty$; 2[
 - $I \cap J =]-4$; 2[
 - $I \cup J =]-\infty$; 7]
- g) I =]-5; 3[et $J = [3; +\infty[$
 - $I \cap J = \emptyset$ (car 3 appartient au second intervalle mais pas au premier, donc pas à leur intersection)
 - $I \cup J =]-5$; $+\infty[$ (3 appartient à l'un des intervalles, donc à leur réunion)
- h) I =]-5; 3[et J =]3; $+\infty$ [
 - $I \cap J = \emptyset$ (car 3 n'appartient à aucune des deux intervalles, donc pas à leur intersection)
 - $I \cup J =]-5$; $3[\cup]3$; $+\infty$ (3 n'appartenant à aucun des deux intervalles, on ne peut pas simplifier l'écriture de cette réunion d'intervalles)