2^{nde}: correction du contrôle sur les vecteurs

Exercice I (1,5 point)

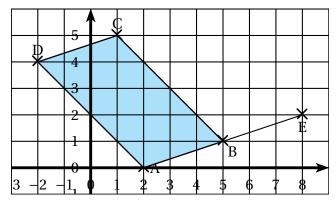
À l'aide de la relation de Chasles, simplifier les expressions suivantes :

1.
$$\overrightarrow{AE} + \overrightarrow{EF} = \boxed{\overrightarrow{AF}}$$

2.
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

Exercice II (3,5 points)

On considère la figure ci-dessous



- 1. ABCD est un parallélogramme si, et seulement si, $\overrightarrow{AB} = \overrightarrow{DC}$
- 2. E est le symétrique de A par rapport à B.
 - (a) Pour E, voir figure
 - (b) On a : $\overrightarrow{AB} = \overrightarrow{DC}$ car ABCD est un parallélogramme et $\overrightarrow{AB} = \overrightarrow{BE}$ car B est le milieu de AE par construction.
 - (c) On en déduit que $\overrightarrow{BE} = \overrightarrow{DC}$. On en déduit que \overrightarrow{BECD} est un parallélogramme.

Exercice III (3 points)

Dans un repère orthonormé, on donne les points : A(-2; 4), B(3; 3) C(-1; 0), D(4; -1).

1. •
$$\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$
 donc $\overrightarrow{AB}\begin{pmatrix} 3 - (-2) = 5 \\ 3 - 4 = -1 \end{pmatrix}$ donc $\overrightarrow{AB}\begin{pmatrix} 5 \\ -1 \end{pmatrix}$

•
$$\overrightarrow{CD}\begin{pmatrix} x_D - x_C \\ y_D - y_C \end{pmatrix}$$
 donc $\overrightarrow{CD}\begin{pmatrix} 5 \\ -1 \end{pmatrix}$.

• \overrightarrow{AB} et \overrightarrow{CD} ont les mêmes coordonnées donc $\overrightarrow{AB} = \overrightarrow{CD}$. On en déduit que \overrightarrow{ABDC} est un parallélogramme.

2. •
$$\overrightarrow{AB} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$
 donc $AB = \sqrt{5^2 + (-1)^2} = \sqrt{25 + 1} = \sqrt{26}$

•
$$\overrightarrow{BD} \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$
 donc $BD = \sqrt{1^2 + (-4)^2} = \sqrt{1 + 16} = \sqrt{17} \neq \sqrt{26}$

• *AB* ≠ *BDC*; le parallélogramme *ABDC* a deux côtés consécutifs [*AB*] et [*BD*] de longueurs différentes : ce n'est **pas un losange**.

Exercice IV (3 points)

Dans un repère (O; I; J), on considère les points A(1; 4), B(5; -3) et C(2; 5). ABCD est un parallélogramme si, et seulement si, $\overrightarrow{AB} = \overrightarrow{DC}$.

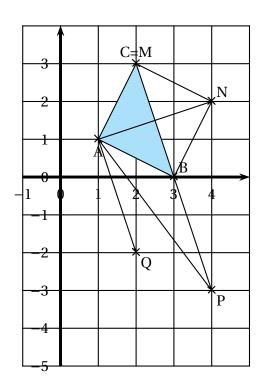
- $\bullet \quad \overrightarrow{AB} \begin{pmatrix} 4 \\ -7 \end{pmatrix}$
- $\overrightarrow{DC} \begin{pmatrix} 2 x_D \\ 5 y_D \end{pmatrix}$
- $\overrightarrow{AB} = \overrightarrow{DC}$ si, et seulement si, $\begin{cases} 2 x_D = 4 \\ 5 y_D = -7 \end{cases}$ d'où $\begin{cases} 2 4 = x_D \\ 5 + 7 = y_D \end{cases}$. On en déduit que les coordonnées de D sont $\boxed{D(-2; 12)}$.

Exercice V (3 points)

Sur la figure ci-contre, on a représenté un triangle ABC. Construire les points M, N, P, Q définis par :

•
$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC} = \boxed{AC}$$
 donc $\boxed{M = C}$

- $\overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{AC}$: N est le quatrième sommet du parallélogramme donc [AB] et [AC] sont deux côtés consécutifs (voir cours).
- $\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{CB}$. On place P tel que $\overrightarrow{CB} = \overrightarrow{BP}$. Alors: $\overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{AB} + \overrightarrow{BP} = \overrightarrow{AP}$
- $\overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$.



Exercice VI (3 points)

On donne les points A(3; -1), B(7; 5) et C(-3; 3) dans un repère orthonormé (O; I; J).

1. •
$$\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$
 donc $\overrightarrow{AB}\begin{pmatrix} 4 \\ 6 \end{pmatrix}$

- $\overrightarrow{BC}\begin{pmatrix} -10\\ -2 \end{pmatrix}$
- $\overrightarrow{AC} \begin{pmatrix} -6 \\ 4 \end{pmatrix}$

2. •
$$\overrightarrow{AB} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$
 donc $AB = \sqrt{4^2 + 6^2} = \sqrt{16 + 36} = \boxed{\sqrt{52}}$

•
$$\overrightarrow{BC} \begin{pmatrix} -10 \\ -2 \end{pmatrix}$$
 donc $BC = \sqrt{(-10)^2 + (-2)^2} = \boxed{\sqrt{104}}$

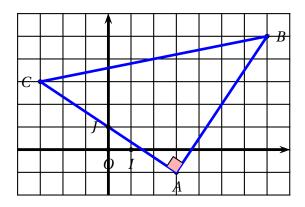
•
$$\overrightarrow{AC} \begin{pmatrix} -6 \\ 4 \end{pmatrix}$$
 donc $AC = \sqrt{(-6)^2 + 4^2} = \sqrt{36 + 16} = \boxed{\sqrt{52}}$

3. • AB = AC donc le triangle ABC est **isocèle** en A.

•
$$BC^2 = 104$$
 et $AB^2 + AC^2 = 52 + 52 = 104$ donc $BC^2 = AB^2 + AC^2$.

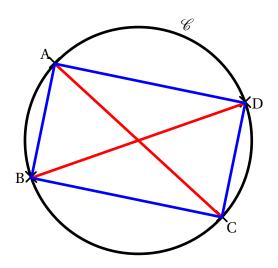
• D'après la réciproque du théorème de Pythagore, le triangle ABC est **rectangle** en *A*. Le triangle *ABC* est donc **isocèle rectangle** en *A*.

Figure non demandée:



Exercice VII (3 points)

Soient [AC] et [BD] deux diamètres d'un cercle $\mathscr C$. Figure :



- 1. Par construction, les diagonales du quadrilatère *ABCD* ont le même milieu, donc c'est un parallèle. Comme ce sont les diamètres d'un cercle, les diagonales ont la même longueur, donc *ABCD* est une rectangle.
- 2. Puisque \overrightarrow{ABCD} est un parallélogramme, on a : $\overrightarrow{AB} = \overrightarrow{DC}$.

Par conséquent : $\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$ en appliquant la relation de Chasles.