I

Factoriser les expressions suivantes :

$$A(x) = (2x+3)(5x-1) + (2x+3)(7x+2) = (2x+3)[(5x-1) + (7x+2)] = (2x+3)(5x-1+7x+2) = \boxed{(2x+3)(12x+1)}$$

$$B(x) = (3x+5)^2 - (2x+7)^2 = [(3x+5) + (2x+7)][(3x+5) - (2x+7)] = (3x+5+2x+7)(3x+7-2x-7) = (5x+12)(x-2)$$

$$C(x) = (3x+5)(9x+4) + (3x+5) = (3x+5)(9x+4) + (3x+5) \times 1 = (3x+5)[(-x+4)+1] = \boxed{(3x+5)(9x+5)}$$

$$D(x) = 9x^{2} + 30x + 25 = (3x)^{2} + 2 \times 3x \times 5 + 5^{2} = \boxed{(3x+5)^{2}}$$

П

Pour les fonctions affines suivantes, donner la valeur du coefficient directeur et de l'ordonnée à l'origine.

- a) $f: x \mapsto 3x 7$
 - Le coefficient directeur est m=3
 - L'ordonnée à l'origine est p = -7

b)
$$g: x \mapsto \frac{7x-1}{3} = \frac{7}{3} - \frac{1}{3}$$

- Le coefficient directeur est $m = \frac{7}{3}$
- L'ordonnée à l'origine est $p = -\frac{1}{3}$

c)
$$h: x \mapsto 7 - \frac{5}{3}x = -\frac{5}{3}x + 7$$

- Le coefficient directeur est $m = -\frac{5}{3}$
- L'ordonnée à l'origine est p = 7

Ш

Donner le tableau de variation et le tableau de signes des deux fonction affines suivantes :

a) $f: x \mapsto 3x + 5$.

Le coefficient directeur est m = 3 > 0 donc la fonction est croissante et s'annule en $-\frac{5}{3}$. Le tableau de variation et le beau de signes sont :

х	$-\infty$	$-\frac{5}{3}$	+∞
f(x)		0	*

х	$-\infty$ $-\frac{5}{3}$ $+\infty$
f(x)	- 0 +

b) $g: x \mapsto -2x - 9$

Le coefficient directeur est m = -2 < 0 donc la fonction est décroissante et s'annule en $-\frac{9}{2}$. Le tableau de variation et le beau de signes sont :

x	$-\infty$	$-\frac{9}{2}$	+∞
f(x)	/	0	•

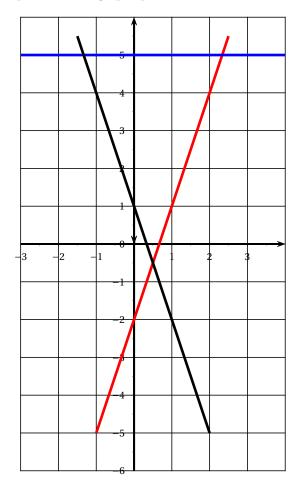
х	$-\infty$ $-\frac{9}{2}$ $+\infty$	
f(x)	+ 0 -	

a) $f: x \mapsto 3x - 2$

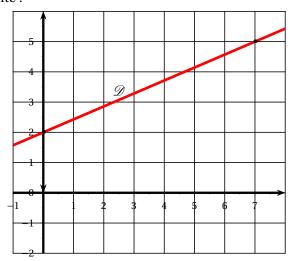
On sait que la représentation graphique d'une fonction affine est une droite; pour Traver celle-ci, deux points suffisent. Par exemple :

х	0	2
f(x)	-2	4

La droite passe par les points de coordonnées (0; -2) et (2; 4).


b) $g: x \mapsto 5$

La fonction est constante donc sa représentation graphique est une droite parallèle à l'axe des abscisses.


c) $h: x \mapsto -3x + 1$

Cherchons les coordonnées de deux points de

la droite : $\begin{array}{c|cc} x & 0 & 2 \\ \hline h(x) & 1 & -5 \end{array}$

On considère la droite $\mathcal D$ suivante :

- 1. ${\mathcal D}$ est la représentation graphique d'une fonction affine.
 - a) L'ordonnée à l'origine est p = 2
 - b) Les points A(0; 2) et B(7; 5) appartient à la droite.

Le coefficient directeur est $m = \frac{y_B - y_A}{x_B - x_A} = \frac{5 - 2}{7 - 0} = \frac{3}{7}$; $m = \frac{3}{7}$