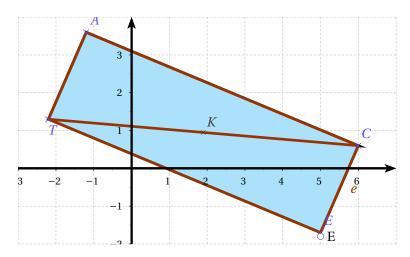
I

2^{nde}: devoir sur feuille nº 1

On soignera la rédaction; on rappelle que chaque réponse doit être justifiée

On munit le plan d'un repère orthonormé (0; I; J). On considère les points T(-2,2; 1,2), A(-1,2; 3,6), C(6; 0,6).



1. Calculer les longueurs des trois côtés du triangle TAC.

$$\overrightarrow{TA}$$
 $\begin{pmatrix} x_A - x_T = 1 \\ y_A - y_T = 2, 4 \end{pmatrix}$ donc

•
$$TA = \sqrt{1^2 + 2, 4^2} = \sqrt{6, 76} = 2, 6$$

•
$$\overrightarrow{AC}\begin{pmatrix} x_C - x_A = 7, 2 \\ y_C - y_A - 3 \end{pmatrix}$$
 donc $AC = \sqrt{7, 2^2 + 3^2} = \sqrt{60, 84} = 7, 8$

•
$$\overrightarrow{AC} \begin{pmatrix} x_C - x_A = 7, 2 \\ y_C - y_A - 3 \end{pmatrix}$$
 donc $AC = \sqrt{7, 2^2 + 3^2} = \boxed{\sqrt{60, 84} = 7, 8}$
• $\overrightarrow{TC} \begin{pmatrix} x_C - x_T = 8, 2 \\ y_C - y_T = -0, 6 \end{pmatrix}$ donc $TC = \sqrt{8, 2^2 + (-0, 6)^2} = \boxed{\sqrt{67, 6}}$.

2. Le plus grand côté est $TC = \sqrt{67.6}$.

$$TC^2 = 67,6$$
; $TA^2 + AC^2 = 6,76 + 60,84 = 67,6$.

Par conséquent : $TC^2 = TA^2 + AC^2$; d'après la réciproque du théorème de Pythagore, le triangle TAC est rectangle en A.

3. *K* est le milieu de [TC].

On en déduit :
$$x_K = \frac{x_T + x_C}{2} = \frac{-2,2+6}{2} = \frac{3,8}{2} = 1,9 \text{ et } y_K = \frac{y_T + y_C}{2} = \frac{1,2+0,6}{2} = \frac{1,8}{2} = 0,9, \text{ donc } \boxed{\frac{K(1,9;0,9)}{2}}$$

4. Puisque TAC est rectangle en A, pour que ECAT soit un rectangle, il suffit que ECAT soit un parallélogramme.

Pour cela, puisque *K* est le milieu de [*CT*], il faut que K soit le milieu de [AE].

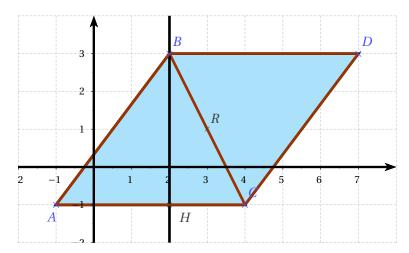
On doit avoir
$$x_K = \frac{x_A + x_E}{2}$$
 donc $2x_K = x_A + x_E$ qui donne $x_E = 2x_K - x_A = 5$.

De même :
$$y_K = \frac{y_A + y_E}{2}$$
 donc $2y_K = y_A + y_E$ qui donne $y_E = 2y_K - y_A = -1.8$.

K a pour coordonnées : K(5; -1,8)

II

1. Dans un repère (O; I; J) orthonormé d'unité 1 cm, placer les points : A(-1; -1), B(2; 3), C(4; -1) et D(7; 3). Figure :



Le triangle ABC semble isocèle.

- $\overrightarrow{AB} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ donc $AB = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$.
- $\overrightarrow{BC} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ donc $BC = \sqrt{2^2 + (4)^2} := \sqrt{20}$.
- AC = 5 car A et C ont la même abscisse.

AC = BC donc le triangle ABC est isocèle en C.

- 2. Le périmètre du trangle ABC est $\mathcal{P}(ABC) = AB + BC + AC = 5 + \sqrt{20} + 5 = 10 + \sqrt{20}$
- 3. Placer le point H, pied de la hauteur issue de B du triangle ABC. [*BC*] est parallèle à l'axe des abscisses car *A* et *C* ont les mêmes abscisses.

La hauteur issue de B est donc parallèle à l'axe des ordonnnées.

On en déduit que H a la même abscisse que B et même ordonnée que A et C

On en déduit que les coordonnés de H sont H(2; -1)

4.
$$\mathscr{A}(ABC) = \frac{AC}{\times}BH2 = \frac{5\times4}{2} = 10.$$

5. R est le milieu de [BC].

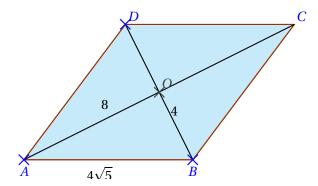
Alors:
$$x_R = \frac{x_B + x_C}{2} = 3$$
 et $y_R = \frac{y_B + y_C}{2} = 1$: $R(3; 1)$

- 6. $\frac{x_A + x_D}{2} = 3 = x_R$ et $\frac{yx_A + y_D}{2} = 1 = y_R$ donc R est aussi le milieu de [AD].
- 7. Les diagonales du quadrilatère *ABDC* ont le même milieu : c'est un parallélogramme.

AB = AC = 5 donc ce parallélogramme a deux côtés consécutifs de même longueur : c'est un losange.

Ш

Le parallélogramme ABCD ci-dessous est-il un losange? (On a $AB = 4\sqrt{5}$, AO = 8 et OB = 4)



•
$$AB^2 = \left(4\sqrt{5}\right)^2 = 16 \times 5 = 80$$

•
$$AO^2 = 8^2 = 64$$

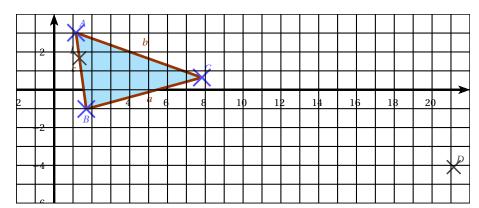
•
$$OB^2 = 4^2 = 16$$

•
$$AO^2 + OB^2 = 64 + 16 = 80$$
 donc $AB^2 = AO^2 + OB^2$.
D'après la **réciproque du théorème de Pythagore**, AOB est rectangle en 0.

Ce parallélogramme a donc deux diagonales perpendiculaires : c'est un losange

IV

Soit ABC un triangle quelconque, I tel que $\overrightarrow{IB} = 2\overrightarrow{AI}$ et D défini par $\overrightarrow{AD} = \overrightarrow{AB} + 3\overrightarrow{IC}$ Figure :



- 1. $\overrightarrow{AB} = \overrightarrow{AI} + \overrightarrow{IB} = \overrightarrow{AI} + 2\overrightarrow{AI} = \boxed{3\overrightarrow{AI}}$ (en utilisant la **relation de Chasles**).
- 2. D est l'image de A par la translation de vecteur \overrightarrow{AB} + $3\overrightarrow{IC}$.
- 3. Construire le point D. (voir figure)
- 4. $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = 3\overrightarrow{AI} + 3\overrightarrow{IC} = 3\left(\overrightarrow{AI} + \overrightarrow{IC}\right) = 3\overrightarrow{AC}$ (en appliquant la relation de Chasles)
- 5. $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = \overrightarrow{BA} + \left(\overrightarrow{AB} + 3\overrightarrow{IC}\right) = \overrightarrow{BA} + \overrightarrow{AB} = 3\overrightarrow{IC} = \boxed{3\overrightarrow{IC}}$
- 6. Dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AC})$, on a :

•
$$A(0; 0)$$

•
$$B(1; 0)$$

•
$$D(0; 3)$$

$$\operatorname{car} \overrightarrow{AD} = 3\overrightarrow{AC}$$

•
$$I\left[\frac{1}{3}; 0\right]$$

$$\operatorname{car} \overrightarrow{AI} = \frac{1}{A}$$

Le tableau suivant résume les résultats obtenus par la classe de seconde C d'un lycée lors d'un devoir de mathématiques.

Notes	3	5	6	7	8	9	10	11	12	13	14	17	18
Effectifs	1	2	1	3	3	5	6	4	2	1	2	2	1
E.C.C	1	3	4	7	10	15	21	25	27	28	30	32	33

1. Dans cette classe, il a 33 élèves.

L'étend des notes est 18 - 3 = 15

2. Il y a 10 élèves qui ont une note inférieure ou égale à 8.

 $\frac{10}{33} \approx 0.303$: $\frac{30.3}{100} = \boxed{30.3\%}$. 30,3 % des élèves ont une note inférieure ou égale à 8.

- 3. La moyenne est $\overline{x} = \frac{330}{33} = \boxed{10}$.
 - La médiane est 10 (trouvé à la calculatrice).
 - $\frac{33}{4} = 8,25 \text{ donc } \boxed{Q_1 = x_9 = 8}; 3 \times \frac{33}{4} = 24,75 \text{ donc } \boxed{Q_3 = x_{25} = 11}.$
- 4. L'effectif total est 33; 33 est impair et $33 = 2 \times 16 + 1$ donc $Me = x_{17} = 10$
- 5. Soit x la note obtenue par Bastien. Sa moyenne est $\frac{3 \times 9 + x}{4} = 9,5$ donc $27 + x = 4 \times 9,5 = 38$ donc x = 11
- 6. Dans le lycée, les trois autres classes de seconde ont effectué le même devoir. Les moyennes par classe obtenues sont les suivantes :

Classes	Seconde A	Seconde B	Seconde C	Seconde D
Moyennes de chaque classe	8	11	10	8,5
Effectifs de chaque classe	34	n	33	32

La moyenne du lycée est :

$$m = \frac{(8 \times 34) + 11n + (10 \times 33) + (8, 5 \times 32)}{34 + n + 33 + 32} = \frac{11n + 874}{99 + n}$$

 $m = \frac{(8 \times 34) + 11n + (10 \times 33) + (8, 5 \times 32)}{34 + n + 33 + 32} = \frac{11n + 874}{99 + n}.$ On a donc: $\frac{11n + 874}{99 + n} = 9,28 \text{ donc } 11n + 874 = 9,28(99 + n) = 918,72 + 9,28n.$

D'où 11n - 9,28n = 918,72 - 874 donc 1,72n = 44,72. Alors $n = \frac{44,72}{1.72} = 26$.

7. On effectue un regroupement en classes des notes des élèves de seconde C. Compléter le tableau suivant :

Notes	[0;5[[5;8[[8; 10 [[10; 12 [[12; 15 [[15;20]
Effectifs	1	6	8	10	5	3

8. La moyenne vaut:

$$\overline{x'} = \frac{(2,5 \times 1) + (6,5 \times 6) + (9 \times 8) + (11 \times 10) + (13,5 \times 5) + (17,5 \times 3)}{33} = \frac{343,5}{33} \times 10,41$$

Cette moyenne est légèrement supérieure à celle calculée directement sans faire de regroupement pas classes.

VI

1. Soit f la fonction définie sur \mathbb{R} par $f(x) = -\frac{3}{2}x + 3$.

(a) f est affine de coefficient directeur $-\frac{3}{2} < 0$; f(x) = ax + b avec $\begin{cases} a = -\frac{3}{2} \\ b = 3 \end{cases}$; f(x) s'annule pour $x = -\frac{b}{a} = -\frac{3}{-\frac{3}{2}} = 2$.

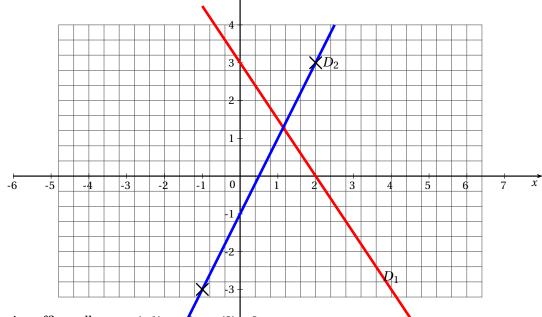
Tableau de signe :

х	$-\infty$	2	$+\infty$
f(x)	+	- () -	_

(b) Le coefficient directeur est $-\frac{3}{2} < 0$ donc la fonction est **décroisssante**.

Si a < b, alors f(a) > f(b) (f renverse l'ordre).

(c) Dans le plan muni d'un repère orthonormé tracer la courbe D_1 représentative de la fonction f. f(0) = 3 et f(2) = 0 donc D_1 passe par les points de coordonnées (0; 3) et (2; 0)



2. Soit *g* la fonction affine telle que g(-1) = -3 et g(2) = 3.

(a) D_2 tracée ci-dessus.

(b) g est affine donc il existe deux nombres a' et b' tels que g(x) = ax + b.

$$a = \frac{g(2) - g(-1)}{2 - (-1)} = \frac{6}{3} = 2.$$

g(x) = 2x + b; g(-1) = -3 donne $2 \times (-1) + b' = -3$ donc b = -3 + 2 = -1.

On en déduit : g(x) = 2x - 1.

3. $f(x) \le 2x - 1$ s'écrit $-\frac{3}{2}x + 3 \le 2x - 1$

On en déduit : $-\frac{3}{2}x - 2x \le -1 - 3$ donc $-\frac{7}{2}x \le -4$. 2 On divise par $-\frac{7}{2}$ qui est négatif; cela donne :

 $x \ge \frac{-4}{-\frac{7}{2}} = -4 \times \left(-\frac{2}{7}\right)$ donc $x \ge \frac{8}{7}$ d_1 est en dessous de d_2 pour $x \ge \frac{8}{7}$.

Interprétation : résoudre cette inéquation revient à trouver les valeurs de x telles que $f(x) \le g(x)$ c'est-à-dire les abscisses des points pour lesquels D_1 est en dessous de D_2 .