FONCTIONS POLYNÔMES DE DEGRÉ DEUX-FONCTIONS HOMOGRAPHIQUES

Table des matières

I	Fonc	tion polynôme du second degré	1
	I.1	Définitions	1
	I.2	Variations et représentation graphique	2
II	Fonctions homographiques		4
	II.1	Définition	4

I Fonction polynôme du second degré

I.1 Définitions

On appelle fonction **polynôme du second degré** toute fonction f définie sur $\mathbb R$ de la forme

$$f(x) = ax^2 + bx + c$$

o \ddot{a} , b et c sont des réels appelés coefficients avec $a \neq 0$.

Exemples: Exemples de fonctions polynômes du second degré

fonctions polynôme de degré 2	coefficients
$f(x) = 2x^2 - 5x + 3$	a = 2, b = -5, c = 3
$f(x) = -x^2 + 3$	a = -1, b = 0, c = 3
$f(x) = -7x^2 + 3x$	a = -7, b = 3, c = 0

Définition

L'expression $f(x) = ax^2 + bx + c$ peut s'écrire sous la forme $f(x) = a(x-\alpha)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$. Cette forme est appelée **forme canonique**

Démonstration:

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^{2} - \frac{b^{2}}{4a} + c = \boxed{a(x - \alpha) + \beta} \text{ en posant}$$

$$\alpha = -\frac{b}{2a}; \text{ on a alors } \beta = -\frac{b^{2}}{4a} + c = f(\alpha), \text{ car en remplaçant } x \text{ par } \alpha \text{ dans } f(x) = a(x - \alpha)^{2} + \beta, \text{ on trouve } \beta.$$

Exemples:

1. Soit $f(x) = 2x^2 - 4x + 5 = ax^2 + bx + c$ avec a = 2, b = -4 et c = 5.

On a
$$\alpha = -\frac{b}{2a} = -\frac{-4}{2 \times 2} = 1$$

$$\beta = f(\alpha) = f(1) = 3$$

far conséquent $f(x) = a(x - \alpha)^2 + \beta = 2(x - 1)^2 + 3$.

2. $f(x) = -5x^2 + 2x - 7 = ax^2 + bx + c$ avec a = -5, b = 2 et c = -7.

$$\alpha = -\frac{b}{2a} = -\frac{2}{2 \times (-5)} = \frac{1}{5}$$

$$\beta = f(\alpha) = f\left(\frac{1}{5}\right) = -5 \times \left(\frac{1}{5}\right)^2 + 2 \times \frac{1}{5} - 7 = -\frac{34}{5}.$$

On en déduit
$$f(x) = -5\left(x - \frac{1}{5}\right)^2 - \frac{34}{5}$$

Remarque: $\beta = f(\alpha)$ peut facilement se calculer à la calculatrice!

Variations et représentation graphique

Propriété

La fonction polynôme de degré 2 définir sur ℝ est :

- strictement décroissante sur $]-\infty$; $\alpha]$ puis strictement croissante sur $[\alpha; +\infty[$ **si** $\alpha>0$,
- strictement croissante sur $]-\infty$; α] puis strictement décroissante $[\alpha; +\infty[$ **si** a<0,

Démonstration dans le cas a > 0: Sur $[\alpha ; +\infty[$:

On prend deux nombres x_1 et x_2 avec $\alpha \le x_1 \le x_2$.

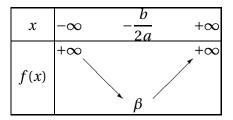
 $\alpha \le x_1 \le x_2 \Rightarrow 0 \le x_1 - \alpha \le x_2 - \alpha \Rightarrow 0 \le (x_1 - \alpha)^2 \le (x_2 - \alpha)^2$ (car la fonction carré est croisante sur $[0; +\infty[)]$ On en déduit $0 \le 0 \le a(x_1 - \alpha)^2 \le a(x_2 - \alpha)^2$ puis $\beta \le a(x_1 - \alpha)^2 + \beta \le a(x_2 - \alpha)^2 \beta$.

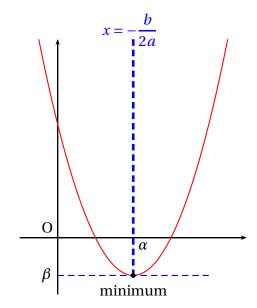
Les images sont classées sdan sel même ordre que les antécédents, donc la fonction f est croissante sur $[\alpha + \infty[$.

Démonstration analogue sur $]-\infty$; α] et dans le cas où a<0

Tableau de variations et représentation graphique :

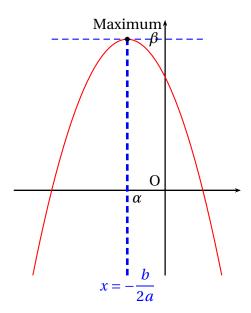
a > 0





a < 0

х	$-\infty$	$-\frac{b}{2a}$	$+\infty$
f(x)	$-\infty$	β	∞ ∞



Dans un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, la courbe représentative d'une fonction polynôme de degré 2 est une **parabole** Cette parabole admet un **axe de symétrie** parallèle à l'axe des ordonnées.

Remarque: pour calculer $f(x) = a(x - \alpha)^2 + \beta$, on effectue plusieurs transformations successives: $x \mapsto (x - \alpha)^2 \mapsto a(x - \alpha)^2 \mapsto a(x - \alpha)^2 + \beta$.

La première transformation correspond à une translation parallèlement à l'axe des abscisses de α unités; la deuxième, multiplication par a, correspond à une dilatation (et un renversement si a < 0) et la troisième à une translation parallèlement à l'axe des ordonnées de β unités.

II Fonctions homographiques

II.1 Définition

On appelle fonction homographique toute fonction de la forme $x \mapsto \frac{ax+b}{cx+d}$ où a, b, c et d sont des réels avec $c \neq 0$ et $ad-bc \neq 0$.

Propriété

L'ensemble de définition de la fonction $f: x \mapsto \frac{ax+b}{cx+d}$ est $\mathbb{R} \setminus \left\{-\frac{d}{c}\right\}$.

Exemple: soit
$$f: x \mapsto \frac{2x+3}{7x+3}$$
.

f est bien homographique et l'ensemble de définition est $\mathbb{R} \setminus \left\{-\frac{3}{7}\right\}$.

Définition

La courbe représentative d'une fonction homographique est une hyperbole, constituée de deux branches.

Pour la fonction $f: x \mapsto \frac{2x+3}{7x+3}$, la courbe représentative est :

