2nde : contrôle (ensembles de nombres, intervalles)

I (2,5 points)

Pour chacun des nombres suivants, préciser, parmi les ensembles \mathbb{N} , \mathbb{Z} , \mathbb{D} , \mathbb{Q} et \mathbb{R} le plus petit ensemble auquel il appartient : (justifier chaque réponse!)

$$a = 2,7$$

$$b = \frac{\sqrt{16}}{2}$$

$$c = -\frac{72}{8}$$

$$d = \frac{2\pi - 4}{3\pi - 6}$$
 (penser à simplifier)

II Inégalités (4 points)

Pour chacun des exercices ci-dessous, traduisez par une ou des inégalités la proposition indiquée.

a)
$$x \in [2; 5]$$

b)
$$x \in [3; +\infty[$$

c)
$$x \in]-\infty$$
; 5]

d)
$$x \in]-1; 3]$$

III Trouver un intervalle (4 points)

Pour chacun des exercices ci-dessous, écrivez l'intervalle I, correspondant à l'inégalité ou les inégalités proposée(s).

a)
$$x > 2$$

b)
$$-1 < x \le 7$$

c)
$$x \le 1$$

d)
$$-1 < x < 12$$

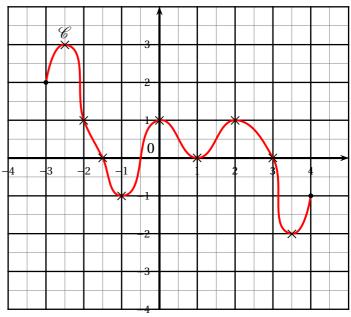
IV Réunion et intersection d'intervalles (5 points)

Pour chacun des exercices suivants, dire si $I \cup J$ est un intervalle.

Utiliser la notation usuelle pour écrire $I \cup J$ et $I \cap J$.

a)
$$I =]-\infty; -1[$$
 et $J =]-\infty; -\frac{2}{3}]$

b)
$$I = [1; +\infty[\text{ et } J =]5; \frac{29}{5}].$$


c)
$$I = \left[-\frac{1}{2}; 0 \right] \text{ et } J = \left[-\frac{4}{3}; \frac{2}{3} \right].$$

d)
$$I =]-1$$
; 0[et $J =]1$; $+\infty$ [.

e)
$$I =]-\infty$$
; 3] et $J = [3; 5]$

V (4,5 points)

Ci-dessous se trouve la courbe représentative $\mathscr C$ d'une fonction f .

- 1. Sur quel intervalle f est-elle définie?
- 2. Quelles sont les images par f de -3? de -2? de 1?
- 3. Quels sont le ou les antécédents par f
 - (a) de 3?
 - (b) de 0?
- 4. (a) Combien 2 a-t-il d'antécédents?
 - (b) Combien 1 a-t-il d'antécédents? Quels sont-ils?