I

Les propositions suivantes sont-elles vraies ou fausses?

- 1. Si \overrightarrow{ABC} est un triangle isocèle en \overrightarrow{A} , alors $\overrightarrow{AB} = \overrightarrow{AC}$.
- 2. Si \overrightarrow{ABCD} est un parallélogramme, alors $\overrightarrow{BA} + \overrightarrow{BC} = \overrightarrow{BD}$.
- 3. Pour tout point *M*, alors $\overrightarrow{MA} + \overrightarrow{AB} = \overrightarrow{MB}$.
- 4. Pour tout point M, alors $\overrightarrow{MB} \overrightarrow{MA} = \overrightarrow{AB}$.

II

ABC est un triangle quelconque.

Placer les points M et N tels que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{BN} = \overrightarrow{AB} - \overrightarrow{AC}$.

Ш

Simplifie les écritures suivantes en utilisant la relation de Chasles :

1.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$$

2.
$$\overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{BC} - \overrightarrow{BA}$$

3.
$$\overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{AB}$$

IV

ABC est un triangle quelconque, A' est le milieu de [BC], B' celui de [CA] et C' celui de [BA].

1. Représenter la somme vectorielle $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}$ en partant de A.

A quoi semble être égale cette somme?

- 2. Exprime $\overrightarrow{AA'}$ en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 3. Conclus en écrivant autrement $\overrightarrow{BB'}$ et $\overrightarrow{CC'}$ (en prenant modèle sur la question 2.) puis en déduire la somme initiale.

V

 \overrightarrow{ABCD} est un parallélogramme. E est le point tel que $\overrightarrow{BC} = \overrightarrow{CE}$.

Démontrer que [AE] et [CD] ont le même milieu.

VI L'intrus

Soit ABCD un parallélogramme. M et N sont les milieux de [AD] et [BC]. un intrus s'est glissé dans la liste suivante ; le débusquer.

$$\bullet \overrightarrow{AD} + \overrightarrow{MB} + \overrightarrow{NA}$$

$$\bullet \overrightarrow{AB} + \overrightarrow{MD} + \overrightarrow{CM}$$

$$\bullet \overrightarrow{CM} + \overrightarrow{MA} + \overrightarrow{MD} + \overrightarrow{AN}$$

$$\bullet \overrightarrow{BM} + \overrightarrow{BN} + \overrightarrow{DA}$$

$$\bullet \overrightarrow{CM} + \overrightarrow{DN} + \overrightarrow{AD}$$