2^{nde} AP (condition nécéssaire et suffisante)

(Inspiré de Math 2e BELIN; Langage, Logique, Démonstrations Marcel Condamine)

La phrase : Si x > 2 alors $x^2 > 1$ » est vraie.

En effet, si x > 2 alors $x^2 > 4$ donc $x^2 > 1$.

Il est **suffisant** que x soit supérieur à 2 pour que x^2 soit supérieur à 1. Mais il n'est **pas nécessaire** que x soit supérieur à 2 pour que x^2 soit supérieur à 1.

En effet, 1, 2 < 2 et 1, 44 > 1 $(1, 2^2 = 1, 44)$.

« x > 2 » est une condition suffisante pour que $x^2 > 1$ » mais ce n'est pas une condition nécessaire.

Exercice 1:

- a) Indiquer si les conditions ci-dessous sont suffisantes pour que $x^2 > 4$:
 - a) x > 10
 - b) x > 1,4
 - c) x < -2
 - d) x < 0
 - e) x > 2
 - f) x < -1
 - g) x < -2 ou x > 2
 - h) x > 1
 - i) x < -3 ou x > 3.
- b) Parmi les conditions suffisantes, indiquer celle(s) qui est (ou sont) nécessaire(s).

Exercice 2:

Même exercice pour que ABCD soit un parallélogramme :

- a) ABCD est un rectangle
- b) AB = CD
- AC et [BD] se coupent en leur milieu et $(AC) \perp (BD)$
- AC et [BD] se coupent en leur milieu
- c) AC = BD
- d) ABCD est un carré

Exercice 3:

Retrouver l'erreur de raisonnement dans la rédaction ci-dessous : Enoncé : Résoudre dans \mathbb{R} l'équation $x^2+x+1=0$. »

Solution:

- $x^2 + x + 1 = 0$
- On a $x^2 + (x+1) = 0$ et x(x+1) + 1 = 0
- D'où $x + 1 = -x^2$ et $x(-x^2) + 1 = 0$
- Soit $x^3 = 1$
- Soit x = 1.
- Donc 3 = 0.»