Ι

- 1. Un prix est multiplié par 2,5 : le coefficient multiplicateur est donc 2,5. Si t est le taux d'augmentation, 1+t=2,5, donc t=1,5=150 %. Le prix a augmenté de 150 %.
- 2. Taux dévolution : $\frac{70-27}{27} \times 100 \approx 159$. Le baril a augmenté de 159 % entre 2003 et 2007.
- 3. Une quantité subit une hausse de 15 %, suivie d'une baisse de 10 %. Le coefficient multiplicateur global est : $\left(1 + \frac{15}{100}\right) \times \left(1 \frac{10}{100}\right) = 1,035 = 1 + \frac{3,5}{100}$. Le taux global d'évolution est donc de 3,5 %.
- 4. Soit I son indice en 2007; les indices étant proportionnelles aux prix, on a : $\frac{150}{120} = \frac{I}{100}$ d'où $I = \frac{150}{120} \times 100 = 125$. L'indice de son prix est 125 en 2007.
- 5. Le coefficient multiplicateur associé à la hausse de 7 % est 1,07. Cette hausse se porsuit avec le même taux pendant 15 ans; les coefficients multiplicateurs se multiplient! Le coefficient multiplicateur global est donc $1,07^{15}\approx 2,76$. $2,76=1+1,76=1+\frac{176}{100}$. Le taux global de hausse est de 176 %
- 6. Sit x le prix hors taxes de l'article. Le taux de la TVA est de 19,6 %, donc $x \times \left(1 + \frac{19,6}{100}\right) = 250$; on en déduit que $x = \frac{250}{1,196} \approx 209,03$.

Le prix hors-taxes était d'environ 209,03 €.

П

Pour la première entreprise, le coefficient multiplicateur global correspondant aux deux évolutions est :

$$\left(1 + \frac{15}{100}\right) \times \left(1 - \frac{5}{100}\right) = 1,0925.$$

Pour la seconde entreprise, le coefficient multiplicateur global correspondant aux deux évolutions est :

$$\left(1 - \frac{10}{100}\right) \times \left(1 + \frac{20}{100}\right) = 1,08.$$

Après les deux évolutions, l'effectif de la première entreprise est supérieur à celui de la seconde.

Ш

Appelons x le nombre d'élèves de la classe. 40 % des élèves de la classe sont des filles, donc le nombre de filles est $\frac{40}{100} \times x$.

Parmi ces filles, 46,875 % étudient une troisième langue; le nombre de filles étudiant une troisième langue est donc : $\frac{46,875}{100} \times \left(\frac{40}{100}x\right)$.

On arrive à l'équation :
$$\frac{46,875}{100} \times \frac{40}{100} x = 6$$
 d'où : $x = \frac{6}{\frac{46,875}{100} \times \frac{40}{100}} = 32$.

La classe comprend 32 élèves .

IV

- 1. Le prix hors-taxes d'un article est de 155 €. Le mntant de la TVA est de 19,06 %. Le montant TTC de l'article est alors : $155 \times \left(1 + \frac{19,06}{100}\right) = \boxed{185,38 €}$
- 2. Le prix TTC est de 564 €. Soit *x* le montant HT. On a alors $x \times \left(1 + \frac{19,6}{100}\right) = 564$ donc 1,196x = 564. Alors $x = \frac{564}{1,916} \approx 471,57$.

Le prix HT était d'environ 471,57 €

prix pour revenir au prix initial (taux d'évolution réciproque) : le produit des deux coefficients multiplicateurs doit être égal à 1.

$$(1-t) \times \left(1 + \frac{51,7}{100}\right) = 1 \text{ donc } 1 - t = \frac{1}{1,517} \text{ d'où}$$

 $t \approx 1 - \frac{1}{1,517} \approx 0,34.$

Il faut donc appliquer une baisse d'environ 34 % pour revenir au prix initial.

V

Soit t le taux d'éugmentation au cours du second trimestre 2005. Le coefficient multiplicateur global correspodant aux deux hausses successives est $\left(1 + \frac{13,2}{100}\right) \times (1+t) = \frac{7.5}{100}$

 $1 + \frac{7.5}{100}$ puisque le taux global d'augmentation est de 7,5 %.

On en déduit que
$$1 + t = \frac{1{,}132}{1{,}075}$$
 d'où

$$t = 1 - \frac{1,132}{1,075} \approx 1,053 = 1 + \frac{5,3}{100}.$$

Le taux d'augmentation au cours du second trimestre 205 a été de de 5,3 % environ.

VI

Soit x le prix HT. Avec le taux de TVA de 19,6 %, le prix est $13\,500 \in$; par coonséquent : $\left(1 + \frac{19,6}{100}\right)x = 3500$ d'où $x = \frac{3500}{1,196}$.

On lui applique alors une TVA de 5,5 %. Le montant TTC devient alors : $\left(1 + \frac{5,5}{100}\right) \times \frac{3500}{1,196} \approx 11\,908,44 \in$.

Le nouveau devis est de 11 908,44 €.