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Résolution de l’équation ax2+bx +c = 0

Forme canonique

On a vu en Seconde que :
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Résolution de l’équation ax2+bx +c = 0

Forme canonique

On a vu en Seconde que :

ax2+bx +c = a(x +α)+β

avec α=−
b

2a
et β= f (α) en posant f (x)= ax2+bx +c.
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Résolution de l’équation ax2+bx +c = 0

Forme canonique

On a vu en Seconde que :

ax2+bx +c = a(x +α)+β

avec α=−
b

2a
et β= f (α) en posant f (x)= ax2+bx +c.

On trouve :

f (α)= f

(

−
b

2a

)

= a

(

−
b

2a

)2

+b×
(

−
b

2a

)

+c
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= a×
b2

4a2
−

b2

2a
+c
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= a×
b2

4a2
−

b2

2a
+c

=
−b2+4ac

4a
.
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= a×
b2

4a2
−

b2

2a
+c

=
−b2+4ac

4a
.

On pose ∆= b2−4ac. (qu’on apelle discriminant).
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= a×
b2

4a2
−

b2

2a
+c

=
−b2+4ac

4a
.

On pose ∆= b2−4ac. (qu’on apelle discriminant).

On en déduit :
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= a×
b2

4a2
−

b2

2a
+c

=
−b2+4ac

4a
.

On pose ∆= b2−4ac. (qu’on apelle discriminant).

On en déduit :

ax2+bx +c = a

(

x +
b

2a

)2
−
∆

4a
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= a×
b2

4a2
−

b2

2a
+c

=
−b2+4ac

4a
.

On pose ∆= b2−4ac. (qu’on apelle discriminant).

On en déduit :

ax2+bx +c = a

(

x +
b

2a

)2
−
∆

4a

a

[

(

x +
b

2a

)2

−
b2−4ac

4a2

]

.
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En simplifiant par a non nul, L’équation s’écrit :
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En simplifiant par a non nul, L’équation s’écrit :

(

x +
b

2a

)2

−
∆

4a2
= 0.
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En simplifiant par a non nul, L’équation s’écrit :

(

x +
b

2a

)2

−
∆

4a2
= 0.

On voit que la résolution de l’équation dépend du signe de ∆ :
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Premier cas
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Premier cas

∆< 0 :
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Premier cas

∆< 0 :

Alors :
(

x +
b

2a

)2

−
∆

4a2
=

(

x +
b

2a

)2

+
(

−∆
4a2

)

> 0 (car le premier terme

étant le carré d’un nombre réel, il est positif ou nul et le second
terme est strictement positif)
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Premier cas

∆< 0 :

Alors :
(

x +
b

2a

)2

−
∆

4a2
=

(

x +
b

2a

)2

+
(

−∆
4a2

)

> 0 (car le premier terme

étant le carré d’un nombre réel, il est positif ou nul et le second
terme est strictement positif)

donc l’équation n’a pas de solution.
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Premier cas

∆< 0 :

Alors :
(

x +
b

2a

)2

−
∆

4a2
=

(

x +
b

2a

)2

+
(

−∆
4a2

)

> 0 (car le premier terme

étant le carré d’un nombre réel, il est positif ou nul et le second
terme est strictement positif)

donc l’équation n’a pas de solution.

S =;
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Second cas ∆=0 :

L’équation devient :
(

x +
b

2a

)2
= 0 qui a pour solution : x =−

b

2a
.
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Second cas ∆=0 :

L’équation devient :
(

x +
b

2a

)2
= 0 qui a pour solution : x =−

b

2a
.

S =
{

−
b

2a

}
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Second cas ∆=0 :

L’équation devient :
(

x +
b

2a

)2
= 0 qui a pour solution : x =−

b

2a
.

S =
{

−
b

2a

}

Remarque : on a alors ax2 +bx +c =a

(

x +
b

2a

)2
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Troisième cas : ∆> 0 :
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Troisième cas : ∆> 0 :

∆

4a2
>0 :

(

x +
b

2a

)2
−

∆

4a2
est alors la différence de deux carrés donc on

peut utiliser la troisième identité remarquable :
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(

x +
b

2a

)2

−
∆

4a2
= 0

⇔
(

x +
b

2a

)2

−

(p
∆

2a

)2

= 0
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(

x +
b

2a

)2

−
∆

4a2
= 0

⇔
(

x +
b

2a

)2

−

(p
∆

2a

)2

= 0

⇔

[

(x +
b

2a
+
p
∆

2a

][

(x +
b

2a
−
p
∆

2a

]

= 0
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(

x +
b

2a

)2

−
∆

4a2
= 0

⇔
(

x +
b

2a

)2

−

(p
∆

2a

)2

= 0

⇔

[

(x +
b

2a
+
p
∆

2a

][

(x +
b

2a
−
p
∆

2a

]

= 0

⇔

[

(x −
b−

p
∆

2a

][

(x −
b+

p
∆

2a

]

= 0.
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(

x +
b

2a

)2

−
∆

4a2
= 0

⇔
(

x +
b

2a

)2

−

(p
∆

2a

)2

= 0

⇔

[

(x +
b

2a
+
p
∆

2a

][

(x +
b

2a
−
p
∆

2a

]

= 0

⇔

[

(x −
b−

p
∆

2a

][

(x −
b+

p
∆

2a

]

= 0.

Un produit de facteurs est nul si et seulement si l’un des
facteurs est nul :
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L’équation admet alors deux solutions :

x1 =
−b−

p
∆

2a
et x2 =

−b+
p
∆

2a

Équations du second degré



L’équation admet alors deux solutions :

x1 =
−b−

p
∆

2a
et x2 =

−b+
p
∆

2a

S =

{

−b−
p
∆

2a
;
−b+

p
∆

2a

}
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L’équation admet alors deux solutions :

x1 =
−b−

p
∆

2a
et x2 =

−b+
p
∆

2a

S =

{

−b−
p
∆

2a
;
−b+

p
∆

2a

}

Remarque : on a alors ax2+bx +c = a(x −x1)(x −x2), où x1 et
x2 sont les deux solutions.
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Résumé :
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Résumé :

Signe de ∆ Nombre de solutions Solutions
∆< 0 pas de solution S =;

∆= 0 une solution S =
{

−
b

2a

}

∆> 0 deux solutions S =

{

−b−
p
∆

2a
;
−b+

p
∆

2a

}
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Exemples d’application
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Exemples d’application

Résoudre l’équation 3x2+5x −2= 0.
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Exemples d’application

Résoudre l’équation 3x2+5x −2= 0.

C’est une équation du type ax2+bx +c = 0 avec a= 3, b =5 et
c =−2.
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Exemples d’application

Résoudre l’équation 3x2+5x −2= 0.

C’est une équation du type ax2+bx +c = 0 avec a= 3, b =5 et
c =−2.

∆= b2−4ac = 52−4×3× (−2)= 25+24= 49> 0.
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Exemples d’application

Résoudre l’équation 3x2+5x −2= 0.

C’est une équation du type ax2+bx +c = 0 avec a= 3, b =5 et
c =−2.

∆= b2−4ac = 52−4×3× (−2)= 25+24= 49> 0.

L’équation a donc deux solutions : x1 =
−b−

p
∆

2a
=

−5−7
6

=−2

et x2 =
−b+

p
∆

2a
=

−5+7
6

=
1
3
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Exemples d’application

Résoudre l’équation 3x2+5x −2= 0.

C’est une équation du type ax2+bx +c = 0 avec a= 3, b =5 et
c =−2.

∆= b2−4ac = 52−4×3× (−2)= 25+24= 49> 0.

L’équation a donc deux solutions : x1 =
−b−

p
∆

2a
=

−5−7
6

=−2

et x2 =
−b+

p
∆

2a
=

−5+7
6

=
1
3

S =
{

−2 ;
1
3

}

Équations du second degré



Résoudre l’équation : 3x2 +30x +75= 0.
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Résoudre l’équation : 3x2 +30x +75= 0.

L’équation est de la forme ax2 +bx +c =0 avec a= 3, b = 30 et
c = 75

∆= 302−4×3×75=0
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Résoudre l’équation : 3x2 +30x +75= 0.

L’équation est de la forme ax2 +bx +c =0 avec a= 3, b = 30 et
c = 75

∆= 302−4×3×75=0

L’équation a une solution : −
b

2a
=−

30
6

=−5
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Résoudre l’équation : 3x2 +30x +75= 0.

L’équation est de la forme ax2 +bx +c =0 avec a= 3, b = 30 et
c = 75

∆= 302−4×3×75=0

L’équation a une solution : −
b

2a
=−

30
6

=−5

S = {−5}
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Résoudre l’équation : 3x2 +30x +75= 0.

L’équation est de la forme ax2 +bx +c =0 avec a= 3, b = 30 et
c = 75

∆= 302−4×3×75=0

L’équation a une solution : −
b

2a
=−

30
6

=−5

S = {−5}

On pouvait résoudre l’équation directement en factorisant par
3, puis en reconnaissant une identité remarquable.
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Résoudre l’équation : 3x2 +30x +75= 0.

L’équation est de la forme ax2 +bx +c =0 avec a= 3, b = 30 et
c = 75

∆= 302−4×3×75=0

L’équation a une solution : −
b

2a
=−

30
6

=−5

S = {−5}

On pouvait résoudre l’équation directement en factorisant par
3, puis en reconnaissant une identité remarquable.

L’équation s’écrit : 3(x +5)2 = 0 donc on retrouve
S = {−5}
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Résoudre l’équation : x2 +x +2.
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Résoudre l’équation : x2 +x +2.

∆= 12−4×1×2=−7<0.
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Résoudre l’équation : x2 +x +2.

∆= 12−4×1×2=−7<0.

Comme ∆< 0, l’équation n’a pas de solution :
S =;
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Résoudre l’équation : x2 +x +2.

∆= 12−4×1×2=−7<0.

Comme ∆< 0, l’équation n’a pas de solution :
S =;

Remarque : l’expression n’est alors pas factorisable
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