4 Fonction affine et droite

4.1. Définition

Une fonction affine est une fonction définie sur \mathbb{R} par f(x) = ax + b, où a et b sont des réels. a est le coefficient d'accroissement de la fonction affine.

Exemple: Le stock d'une entreprise est de 2 400 t, le 13 Janvier, et de 2 000 t, le 29 Janvier. La quantité stockée est modélisée par une fonction affine, f(x) est la quantité en tonne et x la date, avec x = 1le 1 Janvier. Ainsi f(13) = 2400 et f(29) = 2000.

$$a = \frac{2\ 000 - 2\ 400}{29 - 13} = \frac{-400}{16} = -25$$
; donc $f(x) = -25(x - 13) + 2\ 400 = -25x + 2\ 725$.

Dire que a = -25 signifie que le stock diminue en moyenne de 25 t par jour.

Le coût marginal d'un produit en fonction de la quantité se modélise par une fonction affine f, avec le coût marginal f(q), en k€, et la quantité q, en tonne.

1° Sachant que le coût marginal est de 4 500 € lorsque la production est $q = 1,5 \, \text{t}$, et de 15 k \in lorsque $q = 4 \, \text{t}$, déterminer la fonction de coût marginal.

2° Calculer le coût marginal lorsque la production est de 5,8 t.

La population d'un village diminue de 150 habitants par an, depuis x = 0 en 1970.

Elle est de 2 500 habitants en 2000 .

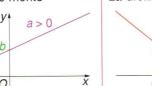
a) Déterminer la fonction de population P, où P(x) est en milliers d'habitants. Calculer la population en 2005.

b) En 2005 est construit une gare TGV à 20 km de ce village. La population augmente alors de 200 habitants par an. Quelle sera la population en 2020 ?

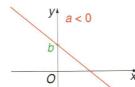
4.2. Représentation d'une fonction affine, sens de variation

La courbe représentative d'une fonction affine est une droite d'équation y = a x + b. Son coefficient directeur est a et la droite coupe l'axe des ordonnées en (0; b).

Si le coefficient a est positif, la fonction affine est croissante sur $\,\mathbb{R}\,$. La droite monte

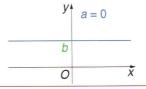


négatif, la fonction affine est décroissante sur $\,\mathbb{R}\,$. La droite descend

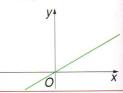


Si le coefficient a est Si a = 0, la fonction affine est une fonction constante sur \mathbb{R} .

La droite est horizontale



Si f(x) = a x, alors b=0, la fonction est linéaire. La droite passe par l'origine



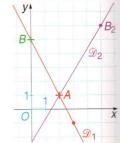
Pour lire l'équation réduite d'une droite 3 tracée :

• on repère deux points A et B de la droite et on lit la différence des ordonnées $\Delta y = y_B - y_A$, et la différence des abscisses $\Delta x = x_B - x_A$.

Le coefficient directeur est le quotient $a = \frac{\Delta y}{\Delta x}$;

• on lit l'ordonnée à l'origine b, ce qui donne directement y = ax + b, ou, si b n'est pas lisible, on applique $y = a(x - x_A) + y_A$.

Exemple: Pour \mathcal{D}_1 , on lit y = -2x + 5; pour \mathcal{D}_2 , on lit $y = \frac{5}{3}(x - 2) + 1$.



Représenter les fonctions affines dans le même repère orthonormal et indiquer leur sens de variation.

a)
$$x \mapsto -\frac{3}{4}x + 5$$
;

b)
$$x \mapsto \frac{3x}{2}$$

a)
$$x \mapsto -\frac{3}{4}x + 5$$
; b) $x \mapsto \frac{3x}{2}$; c) $x \mapsto \frac{4x - 5}{3}$;

$$d) x \longrightarrow x$$

e)
$$x \mapsto -x$$

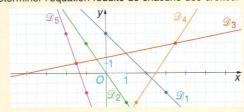
e)
$$x \mapsto -x$$
; f) $x \mapsto -4$;

g)
$$x \mapsto -2x + 15$$
;

h)
$$x \mapsto 5x + 12$$
:

g)
$$x \mapsto -2x + 15$$
; h) $x \mapsto 5x + 12$; i) $x \mapsto \frac{3}{4}x - 7$.

Déterminer l'équation réduite de chacune des droites.



1 Équations de base

1.1. Équation ax + b = 0, avec $a \neq 0$

On soustrait **b** à chaque membre : $ax + b - b = 0 - b \Leftrightarrow ax = -b$.

Comme $a \neq 0$, on divise par a chaque membre : $\frac{a \times x}{a} = \frac{-b}{a}$ $\Leftrightarrow x = \frac{-b}{a}$; on obtient une solution.

Exemple: $\frac{2}{3}x - \frac{4}{5} = 0 \iff \frac{2}{3}x = \frac{4}{5} \iff x = \frac{4}{5} \times \frac{3}{2} = \frac{2 \times 3}{5} = \frac{6}{5}$.

 \triangle L'équation $a \times = 0$ possède une unique solution x = 0, car $\frac{0}{a} = 0$.

Si a = 0, 0x = b, avec $b \neq 0$, n'a aucune solution et l'équation 0x = 0 a tous les réels pour solutions.

- Résoudre de tête ; puis donner la solution en fraction simplifiée.

 a) -x-4=0;
 b) 6x+3=0;
 c) -3x=0;
 Résoudre de tête ; puis donner la solution simplifiée.

 a) $-\frac{5}{2}x=0$;
 b) $\frac{3x-1}{2}=0$;
 c) 4-x=0;

a)
$$-\frac{5}{2}x = 0$$
;

d)
$$\frac{-x+3}{5} = 0$$
; e) $-\frac{x}{4} + \frac{3}{4} = 0$; f) $\frac{x}{5} - \frac{1}{15} = 0$. d) $-\frac{3}{2}x + \frac{9}{2} = 0$; e) $-5 - 2x = 0$; f) $\frac{3}{4}x = 0$.

1.2. Produit nul

Mettre \mathbf{x} en facteur, lorsque les deux termes de la somme comportent \mathbf{x} : $a\mathbf{x}^2 + b\mathbf{x} = \mathbf{x} (ax + b)$.

Factoriser une différence de deux carrés : $A^2 - B^2 = (A + B)(A - B)$,

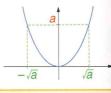
ainsi
$$-(x-4)^2 + 5 = 5 - (x-4)^2 = (\sqrt{5} + x - 4)(\sqrt{5} - x + 4)$$
.

Un produit de facteurs est nul si, et seulement si, l'un au moins des facteurs est nul :

$$(A) \times (B) = 0 \Leftrightarrow A = 0 \text{ ou } B = 0.$$

Exemples: $\bullet x^2 - 5x = 0 \Leftrightarrow x(x-5) = 0 \Leftrightarrow x = 0 \text{ ou } x = 5;$ $\bullet x^2 - 9 = 0 \Leftrightarrow (x+3)(x-3) = 0 \Leftrightarrow x = -3 \text{ ou } x = 3.$

Remarque: l'équation $x^2 = a$, avec a > 0, a deux solutions: $x = -\sqrt{a}$ ou $x = \sqrt{a}$.



- Résoudre : 1° a) $-4x^2 + x = 0$; b) $x^2 1 = 0$;

- c) $\frac{5}{9} x = x^2$;
- $d) 4x^2 + 1 = 0.$
- 2° a) $\frac{x^2}{4} \frac{1}{9} = 0$; b) $\frac{4}{3}x (x^2 9x) = 0$.
- Résoudre par produit nul : $(A) \times (B) = 0$. 1° a) $5x^2 = 4x$; b) $3x^2 4x + 3$
- b) $3x^2 4x + 3 = 4(3 x)$;
- c) $(3x + 2)^2 x^2 = 0$; d) $2x^2 + 9 = 3x^2$.
- 2° a) $\frac{2}{3}x^2 = \frac{4}{3}x$ b) $-\frac{9}{25}x^2 + \left(x \frac{3}{5}\right)^2 = 0$.

1.3. Quotient nul

Un quotient est nul si, et seulement si, le numérateur est nul et le dénominateur différent de zéro :

$$\frac{N}{D} = 0 \iff N = 0 \text{ et } D \neq 0$$
.

Exemple: $\frac{4x-x^2}{x-3}=0$; on résout $4x-x^2=0 \Leftrightarrow x(4-x)=0 \Leftrightarrow x=0$ ou x=4;

et la valeur interdite est 3, car $x-3=0 \Leftrightarrow x=3$. Ainsi 0 et 4 sont solutions, car non interdites.

- Résoudre les équations suivantes :
- 1° a) $\frac{4x-3}{x-1} = 0$; b) $\frac{x^2-2x}{2+x} = 0$;
- 2° a) $\frac{(x-3)^2-25}{x-8}=0$; b) $\frac{-x^2+(2x-1)^2}{2x-1}=0$.
- Résoudre les équations suivantes :
- 1° a) $\frac{3}{x+1} = 4$; b) $\frac{x+2}{2x-3} = 1$; c) $\frac{x^2-9}{3x} = 0$.
- 2° a) $\frac{2}{x-1} = \frac{3}{2}$; b) $\frac{2-x}{x+4} = 2$; c) $\frac{x+2}{-2x} = \frac{5}{4}$.

2 Second degré

2.1. Équation $ax^2 + bx + c = 0$, avec $a \neq 0$

L'existence des solutions de cette équation dépend du signe du discriminant $\Delta = b^2 - 4ac$:

- si ∆ < 0 (négatif), il n'y a pas de solution ;
- il y a une unique solution $\alpha = \frac{-b}{2a}$, abscisse du sommet de la parabole ; • si $\Delta = 0$ (nul),
- si $\Delta > 0$ (positif), il y a deux solutions distinctes: $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

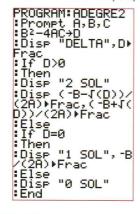
Exemples: $-3x^2 + 7x - 5 = 0$, donc $\Delta = b^2 - 4ac = -11$, négatif, donc il n'y a pas de solution.

 $4x^2 - 12x + 1 = 0$, donc $\Delta = b^2 - 4ac = 128$, positif. $\sqrt{\Delta} = \sqrt{128} = 8\sqrt{2}$, donc if y a deux solutions:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{12 - 8\sqrt{2}}{8} = \frac{12}{8} - \frac{8\sqrt{2}}{8} = \frac{3}{2} - \sqrt{2}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{3}{2} + \sqrt{2}$.

Résolution à l'aide d'un programme à la calculatrice :

- Sur T.I. 82 Stats, 83, 84
- Sur Casio 35 +, 85



On résout l'équation : $0.02x^2 - 3.55x - 90 = 0$ PRGM EXEC 1:ADEGRE2 ENTER



- Résoudre en utilisant A et donner les solutions sous forme simplifiée s'il y a lieu.
- a) $4x^2 7x 2 = 0$;
- b) $-x^2 + 2x + 3 = 0$;
- c) $\frac{3}{2}x^2 x + \frac{2}{3} = 0$; d) $-\frac{3}{2}x^2 \frac{x}{10} + 4 = 0$.
- Reprendre l'exercice **7** en simplifiant $\sqrt{\Delta}$.
- a) $x^2 4x 14 = 0$; b) $-4x^2 + 4x + 11 = 0$;
- c) $-2x^2 + 2x + \frac{7}{2} = 0$;
- d) $3x^2 4x \frac{1}{3} = 0$.
- Résoudre à l'aide du programme ci-dessus.
- a) $120x^2 586x + 301 = 0$; b) $-0.05x^2 + 5.12x 12 = 0$;
- c) $-x^2 44x + 672 = 0$

2.2. Signe du trinôme $ax^2 + bx + c = 0$

Les racines du trinôme sont les solutions de l'équation $ax^2 + bx + c = 0$ lorsque $\Delta \ge 0$. Suivant le signe de a, coefficient de x^2 , on obtient l'allure de la parabole:

• si a > 0 (positif)

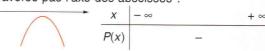
la parabole est tournée vers le haut

Exemple: $P(x) = x^2 - 5x + 6$

a pour racines 2 et 3, donc la parabole traverse l'axe des abscisses :

si a < 0 (négatif)

la parabole est tournée vers le bas Exemple: $P(x) = -3x^2 + 7x - 5$ n'a pas de racine, donc la parabole ne traverse pas l'axe des abscisses :



- Étudier le signe des trinômes suivants, en calculant les racines.
- a) $5x^2 4x + 6$; c) $0.5x^2 - 3x + 4$;
- b) $-x^2 + 12x + 160$:
- d) $-3x^2 + 1504x 2000$.

313

3 Calculs sur les fractions

3.1. Réduire au même dénominateur

Pour écrire une somme de fractions sous la forme d'un quotient :

- 1) on cherche les valeurs interdites et le dénominateur commun DC le plus petit ;
- 2 par multiplication, on réduit chaque fraction à ce dénominateur commun ;
- (3) on ajoute les numérateurs et on calcule la somme au numérateur.

Attention, on ne développe pas le dénominateur.

Exemple:
$$A(x) = \frac{2}{x-1} + \frac{3x-1}{2x} - \frac{x^2+5}{x^2-x}$$

- 1 Valeurs interdites: $x-1=0 \Leftrightarrow x=1$; $2x=0 \Leftrightarrow x=0$; $x^2-x=x$ (x-1), null en 0 et en 1. $DC = (x-1) \times 2x = 2x(x-1)$ avec 1 et 0 comme valeurs interdites.
- 2 On réduit au même dénominateur :

$$A(x) \ = \ \frac{2\,(2\,x)\,+\,(3\,x\,-\,1)\,(x\,-\,1)\,-\,2\,(x^{2}\,+\,5)}{2\,x\,\,(x\,-\,1)} \ = \ \frac{4\,x\,+\,3\,x^{2}\,-\,3\,x\,-\,x\,+\,1\,-\,2\,x^{2}\,-\,10}{2\,x\,\,(x\,-\,1)} \ = \ \frac{x^{2}\,-\,9}{2\,x\,\,(x\,-\,1)} \ .$$

$$\frac{\Lambda}{R} = \frac{-(N)}{R}; \quad \frac{-N}{R} = \frac{N}{R}; \quad -A \times B = (-A) \times B = A \times (-B).$$

Réduire en un seul quotient, sans oublier les valeurs interdites.

$$A(x) = -x + 4 + \frac{3}{x}$$
;

$$A(x) = -x + 4 + \frac{3}{x}$$
; $B(x) = -x^2 + 3x + \frac{2}{x}$;

$$C(x) = \frac{1}{x} - \frac{3}{2x} + 1$$

$$C(x) = \frac{1}{x} - \frac{3}{2x} + 1$$
; $D(x) = \frac{-5}{2x} + 2 - \frac{1}{3x}$.

Réduire en un seul quotient, sans oublier les valeurs interdites.

$$A(x) = \frac{4}{x} - 3 + \frac{1}{x - 2}$$
; $B(x) = 5 - \frac{2x + 1}{x - 2}$;

$$B(x) = 5 - \frac{2x+1}{x-2}$$

$$C(x) = 1 + \frac{2}{x} - \frac{3x + 2}{x^2}$$

$$C(x) = 1 + \frac{2}{x} - \frac{3x+2}{x^2}$$
; $D(x) = \frac{1}{2x} + \frac{3}{x} - \frac{x+1}{x^2}$.

Réduire en un seul quotient, sans oublier les valeurs interdites.

$$A(x) = 3x - 1 - \frac{x+1}{x+2}$$
; $B(x) = 2x + 1 - \frac{4}{1-x}$;

$$B(x) = 2x + 1 - \frac{4}{1 - x}$$
;

$$C(x) = \frac{2}{x-1} - \frac{1}{2x}$$
;

$$C(x) = \frac{2}{x-1} - \frac{1}{2x}$$
; $D(x) = \frac{1}{x^2} + \frac{3}{4x} + 1$.

Réduire en un seul quotient, sans oublier les valeurs interdites.

$$A(x) = \frac{4}{x} - \frac{x-1}{2x^2} + 1$$
; $B(x) = \frac{4}{3x} - \frac{1}{x^2}$;

$$B(x) = \frac{4}{3x} - \frac{1}{x^2}$$
;

$$C(x) = \frac{2x+1}{x-2} - \frac{x^2-3}{x^2-2x} + \frac{3}{x}$$

3.2. Diviser un produit par un nombre et simplifier une fraction

Pour diviser $A \times B$ par $C(C \neq 0)$, on divise A par C ou bien on divise B par C:

$$\frac{A \times B}{C} = \frac{A}{C} \times B = A \times \frac{B}{C}.$$

$$\bullet \frac{4x(x^2+2)}{8} = \frac{4x}{8}(x^2+2) = \frac{x}{2}(x^2+2).$$

- $\frac{x^2+4x}{x^2-16} = \frac{x(x+4)}{(x+4)(x-4)} = \frac{x}{x-4}$: on simplifie par x+4. 4 et -4 sont valeurs interdites.
- Rendre l'écriture plus simple.

a)
$$\frac{-9x(x^2+4)}{6}$$
;

b)
$$\frac{(4-x)(3-6x)}{12}$$
;

c)
$$\frac{4x^2(x-4)}{-0.8}$$
;

d)
$$\frac{(9x+6)(x-4)}{12}$$
.

Donner les valeurs interdites et simplifier. a) $A(x) = \frac{8-2x}{x^2-4x}$; b) $B(x) = \frac{(x-2)^2}{(x-2)^2}$

a)
$$A(x) = \frac{8-2x}{x^2-4x}$$
;

b)
$$B(x) = \frac{(x-3)^2 - 1}{(x-3)(x-2)}$$

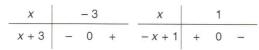
c)
$$C(x) = \frac{4 - x^2}{4x - 8}$$

c)
$$C(x) = \frac{4-x^2}{4x-8}$$
; d) $D(x) = \frac{(4x-1)(4x-3)}{4-(4x-1)^2}$

4 Signe d'expressions

4.1. Expressions particulières

• Signe de ax + b



• Signe d'un carré (...)² • Signe de (...)² + nombre positif

nul en une valeur
$$\alpha$$
 aucune valeur donne 0

Étudier le signe :

$$A(x) = \frac{x}{3} - 4 \; ;$$

Etudier le signe :
$$A(x) = \frac{x}{3} - 4; \qquad B(x) = \left(1 - \frac{x}{2}\right)^2; \qquad C(x) = -\frac{3x}{5}; \qquad A(x) = (5x - 1)^2 + 4;$$

$$C(x) = -\frac{3x}{5} \; ;$$

$$D(x) = x^2 + 1$$

$$E(x) = -(2x + 1)^2$$

$$F(x) = -x^2 - 4$$

Étudier le signe :

$$A(x) = (5x - 1)^2 + 4;$$

$$B(x) = -\frac{4}{5}x + \frac{1}{25};$$

$$D(x) = x^2 + 1$$
; $E(x) = -(2x + 1)^2$; $F(x) = -x^2 - 4$. $C(x) = -(4x + 8)^2 - 1$;

$$D(x) = -2x$$

4.2. Signe d'un produit ou d'un quotient

Pour étudier le signe d'une expression :

- on l'écrit sous forme d'un produit ou d'un quotient de facteurs du 1er ou du 2e degré ;
- on étudie le signe de chaque facteur dans un tableau de signes ;
- on applique la règle des signes.

Pour le 1^{er} degré, on visualise la droite d'équation y = ax + b et on résout ax + b = 0.

Pour le 2^e degré, on cherche les solutions de $ax^2 + bx + c = 0$; on trace l'allure de la parabole, elle traverse (ou non) l'axe des abscisses et on lit le signe.

Exemple: $A(x) = \frac{-2x(x+1)^2}{4-x^2}$ forme quotient de 3 facteurs

				6 666					
X		- 2		- 1		0		2	
- 2 <i>x</i>	+		+		+	0	_		_
$(x + 1)^2$	+		+	0	+		+		+
$4 - x^2$	_	0	+		+		+	0	-
P(x)	-		+	0	+	0	=		+

$$y = -2x ; -2x = 0 \Leftrightarrow x = 0 .$$

$$y = (x+1)^{2} ; (x+1)^{2} = 0 \Leftrightarrow x = -1 .$$

$$y = 4 - x^{2} ; 4 - x^{2} = 0 \Leftrightarrow x = -2 \text{ ou } 2 .$$

Double barre pour les valeurs interdites

Étudier le signe :

$$A(x) = \frac{-5x(x^2 + 9)}{(x - 1)^2}$$

$$B(x) = \frac{-4x+5}{x^2-1}$$

$$C(x) = \frac{3x^2 - 2x - 1}{9 - x}$$

$$D(x) = \frac{-(x-3)^2}{x^2+1}$$

$$A(x) = \frac{2x}{3} (x - 3)^2$$

$$A(x) = \frac{2x}{3} (x-3)^2; B(x) = \frac{-4x(x+4)}{x^2+4};$$

$$C(x) = \frac{4x^2 - 4x + 1}{4x}$$

$$C(x) = \frac{4x^2 - 4x + 1}{4x}$$
; $D(x) = \frac{x^2 - 5x + 4}{9 - x^2}$

$$A(x) = -x + 1 + \frac{4}{x - 1}$$
; $B(x) = \frac{2}{3}x - 1 + \frac{1}{x + 2}$;

$$B(x) = \frac{2}{3}x - 1 + \frac{1}{x+2}$$
;

$$C(x) = \frac{2x+3}{x} + \frac{4}{x-6}$$
; $D(x) = \frac{1}{x} - \frac{5-3x}{x+1}$.

$$D(x) = \frac{1}{x} - \frac{5 - 3x}{x + 1} .$$

Étudier le signe :

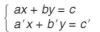
$$A(x) = \frac{1}{2} + \frac{x-3}{x} - \frac{x^2-1}{2x} ;$$

$$B(x) = \frac{2x-1}{x+2} - \frac{3x-5}{x^2+2x} + \frac{x-2}{x} .$$

5 Systèmes

5.1. Système de deux équations à deux inconnues

Système d'inconnues x et y



Si a, b et a', b'sont non proportionnels:

une seule solution

Si a, b, c et a', b', c' sont proportionnels:

une infinité de solutions

Si a, b et a', b' seulement sont proportionnels:

aucune solution

Exemple:
$$\begin{cases} \frac{x}{3} + \frac{y}{2} = 1 \\ x + 4y = -2 \end{cases} \Leftrightarrow \begin{cases} 2x + 3y = 6 \\ x + 4y = -2 \end{cases}$$

Les coefficients ne sont pas proportionnels. $\begin{cases} y = 10 / (-5) = -2 \\ x = -4(-2) - 2 = 6 \end{cases}$

La solution est le couple :

(6; -2)

Indiquer si les systèmes ont une unique solution :

- a) 3x 5y = 10 $\left\{\frac{x}{3} - \frac{y}{5} = 2\right\}$
- b) $\int 0.2x + y = 2$
- c) (x-4y=12.5)0.4x - 1.6y = 0.5

Résoudre les systèmes sans utiliser la calculatrice, pour aucun b) $\int 3x + 2y + 1 = 0$

On a multiplié par 6 pour ne plus avoir de fraction.

- a) $\int x + 2y = 1$ 3x + 5y = 4
- c) (10x + 20y = 40)2x + y = 5
- 4x + y = 2d) [0,3x+1,5y=0,9]1 + 5y = 4

5.2. Systèmes à trois inconnues et plus

On applique la méthode par substitution, surtout quand les coefficients sont simples.

Exemple:
$$\begin{cases} 2x + y + \mathbf{z} = 12 \\ x + 3y + 4z = 23 \\ 3x + 2y + z = 19 \end{cases} \Leftrightarrow \begin{cases} \mathbf{z} = -2x - y + 12 \\ x + 3y + 4(-2x - y + 12) = 23 \\ 3x + 2y + (-2x - y + 12) = 19 \end{cases} \Leftrightarrow \begin{cases} z = -2x - y + 12 \\ +7x + y = +25 \\ x + y = 7 \end{cases}$$

$$\Leftrightarrow \begin{cases} z = -2x - y + 12 \\ y = 7 - x \\ 7x + (7 - x) = 25 \end{cases} \Leftrightarrow \begin{cases} 6x = 25 - 7 \\ y = 7 - x \\ z = -2x - y + 12 \end{cases} \Leftrightarrow \begin{cases} x = \frac{18}{6} = 3 \\ y = 7 - 3 = 4 \\ z = -2 \times 3 - 4 + 12 = 2 \end{cases}$$
 La solution est le **triplet**:

Sinon, on utilise le calcul matriciel, vu en spécialité :

- 2 1 1 • on entre les coefficients dans [A] = 1 3 4 et les seconds membres dans [B] = 23
- on calcule $[A]^{-1} \times [B]$ et on obtient la solution :

Résoudre « à la main » :

- $\int 2x + y + z = 3$ x - y + 2z = 35x + 3y - z = 1
- b) $\int 3x + 2y 3z = 5$ 4x + 3y + 2z = -52x + 2y + z = -2
- Résoudre: X + Y + Z = 4
 - x + 2y = 03y + z = 0
- b) x y + 2z = 12x + y - z = 1

- Résoudre :
- a) 2a = 62b - a = -11c-b=5
- b) -4a = 123a - 4b = -93b + c = 1
- Résoudre :
- a-b+c=1a+b+c=34a + 2b + c = -2
- a-c=0

6 Puissances et chiffres significatifs

6.1. Règles de base

Pour tout réel a non nul, par convention, $a^0 = 1$ et $a^1 = a$; $\frac{1}{a} = a^{-1}$ et $\frac{1}{a^n} = a^{-n}$;

Pour tous les réels a et b non nuls, tous les entiers relatifs n et

$$a^n \times a^p = a^{n+p}$$
; $\frac{a^n}{a^p} = a^{n-p}$; $(a \times b)^n = a^n \times b^n$; $(\frac{a}{b})^n = \frac{a^n}{b^n}$; $(a^n)^p = a^{n \times p}$.

$$\frac{3^{n-1} \times 9}{6^n} = \frac{3^{n-1} \times 3^2}{(2 \times 3)^n} = \frac{3^{n-1+2}}{2^n \times 3^n} = \frac{3^{n+1-n}}{2^n} = \frac{3}{2^n} \text{ qui s'écrit aussi } 3 \times \left(\frac{1}{2}\right)^n$$

$$15 \times 3^{n-2} - 9 \times 3^{n-1} + 2 \times 3^n = 15 \times \frac{3^n}{3^2} - 9 \times \frac{3^n}{3} + 2 \times 3^n = \frac{15}{3^2} \times 3^n - 3 \times 3^n + 2 \times 3^n \quad \text{on met } 3^n \text{ en facteur}$$

$$=3^{n}\left(\frac{5}{3}-3+2\right)=3^{n}\left(\frac{2}{3}\right)=\frac{2}{3}\times3^{n}.$$

Simplifier au maximum :

a)
$$\frac{3^{n+2} \times 3^{2n}}{3^{n+3}}$$

b)
$$\frac{2^{n+1} \times 2^n}{(2^n)^2}$$

b)
$$\frac{2^{n+1} \times 2^n}{(2^n)^2}$$
; c) $\frac{(2 \times 3)^n}{(2^{n-1})^2}$.

on a	(a)	Ъ	©	(d)
$\frac{(e^2)^3}{e^{-1}}$	e ⁶	e ⁷	e ⁵	e ⁹
$\mathrm{e}^4 \times \mathrm{e}^2$	e ⁶	(e ²) ⁴	$(e^4)^2$	$(e^3)^2$
$\frac{(2e)^5}{3}$	$\frac{2^5 \times e^5}{3^5}$	$\frac{2^5 \times e^5}{3}$	1 3 (2e) ⁻⁵	2e ⁵

Écrire sous la forme $A \times (B)^n$, où A et B sont des entiers

a)
$$5^{n-1} \times 2^{n+1}$$
;

b)
$$3^2 \times 2^n \times 3^{-n}$$
;

c)
$$(2 \times 3^n)^2 \times 3^{2-n}$$
; d) $2^{n-3} \times 3^{n-2}$;

d)
$$2^{n-3} \times 3^{n-2}$$
:

e)
$$5 \times 2^{n+1} - 3 \times 2^n$$
;

f)
$$-3 \times 4^n + 5 \times 2^{2n+3}$$
.

Écrire sous la forme $A \times (B)^n$, où A et B sont des entiers naturels, ou des produits ou quotients d'entiers naturels.

a)
$$\frac{4^{n+1} \times 3^{1-n}}{2^{n+2}}$$

b)
$$\frac{4^n \times 2^{n-1}}{2^{3n-1} \times 3^n}$$

a)
$$\frac{4^{n+1} \times 3^{1-n}}{2^{n+2}}$$
; b) $\frac{4^n \times 2^{n-1}}{2^{3n-1} \times 3^n}$; c) $\frac{\left(3^{n-2}\right)^2 \times 2^{n+1}}{6^{n-1}}$.

6.2. Puissances de 10 et chiffres significatifs

Les grands ou petits nombres : 10^3 : mille ; 10^6 : un million ; 10^9 : un milliard ; 10^{-3} : un millième . Diviser par 0,1, c'est multiplier par 10 et diviser par 0,01, c'est multiplier par 100.

Un résultat est arrondi à 3 chiffres significatifs lorsque l'on arrondi les trois premiers chiffres (autres que 0) et on complète par des zéros ou des puissances de 10.

Exemple :
$$\frac{3.4 \times 10^3 \times 0.07}{0.06} = \frac{3.4 \times 10^3 \times 7 \times 10^{-2} \times 10^2}{6} \approx 3.9666 \times 10^3 \approx 3.970$$
.

 \triangle Sur une calculatrice, 4.5E-4 signifie 4,5 \times 10⁻⁴ et 5.7E12 signifie 5,7 \times 10¹².

Pour chacun des polynômes $ax^2 + bx + c$, calculer, à la main, la valeur $\alpha = \frac{-b}{2a}$ et calculer $\Delta = b^2 - 4ac$.

$$A(x) = -0.02 x^2 + 0.6 x + 3$$
; $B(x) = 0.01 x^2 + 0.2 x - 1$; $C(x) = -0.005 x^2 + 0.4 x + 3$; $D(x) = 0.003 x^2 + 0.12 x - 1$; $E(x) = 2.000 x^2 - 400x + 10$; $E(x) = -3.00 x^2 + 20 x - 5$.

Écrire les nombres suivants en écriture décimale à virgule, sans

utiliser la calculatrice.

$$A(x) = 243 \times 10^{-2} - 1,23 + 2$$
; $B(x) = \frac{1,2 \times 10^5 - 432 \times 10^3}{10^4}$;

$$C(x) = 5.304 \times 10^{-2} + 43\,500 \times 10^{-2} - 0.0004 \times 10^{-3}$$
;

$$D(x) = 85 \times 10^{-2} + 0.005 \times 10^{2} - 0.43 \times 10^{3}$$

Calculer à la calculatrice, et donner le résultat arrondi à 3 chiffres significatifs.

a)
$$2.03^3 \times 0.97^2$$
;

b)
$$(1 - 0.02)^5 \times 42000$$

c)
$$\frac{53 \times 1,3^2}{0,21 \times 2,4^3} - \frac{100}{9}$$

c)
$$\frac{53 \times 1,3^2}{0,21 \times 2,4^3} - \frac{100}{9}$$
; d) $\frac{1-1,07^{10}}{1-1,07} \times 53 \times 1,07^6$.

Calculer à la calculatrice, et donner le résultat arrondi à 4 chiffres significatifs.

a)
$$1,03 \times 1,12 \times 0,98 \times 0,93$$
; b) $1 - \left(\frac{5}{6}\right)^4$;

b)
$$1 - \left(\frac{5}{6}\right)^4$$

c)
$$20 \times 0.98 \times \frac{1 - 0.98^5}{1 - 0.98}$$
; d) $2.620 \times (1.05^6 - 0.9^6)$.

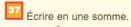
d)
$$2620 \times (1,05^6 - 0,9^6)$$

7 Transformations d'écritures

7.1. Diviser une somme par un nombre

Pour diviser A + B par C (non nul), on divise A par C et on divise B par C: $\frac{A + B}{C} = \frac{A}{C} + \frac{B}{C}$.

Exemple: $\frac{3x^2 + 4x - 10}{2x} = \frac{3x^2}{2x} + \frac{4x}{2x} - \frac{10}{2x} = \frac{3x}{2} + 2 - \frac{5}{x}$, avec 0 pour valeur interdite.



$$A(x) = \frac{-x^2 + 6x - 4}{2x} \; ;$$

$$B(x) = \frac{4x^2 - 5x + 1}{x^2} \; ; \qquad C(x) = \frac{0.1 \, x - \sqrt{8}}{-0.02} \; ;$$

$$C(x) = \frac{0.1 \, x - \sqrt{8}}{-0.02} \; ;$$

$$D(x) = \frac{-0.9 \, x + \sqrt{75}}{0.3}$$

7.2. Vérifier une écriture

On part de la forme à vérifier, on calcule (développement, réduction au même dénominateur, règles de calcul...) et on retrouve la forme de l'énoncé.

Exemples:

• Soit
$$f(x) = -x^3 + 6x^2 - 11x + 6$$
. Vérifier que $f(x) = (x-2)(-x^2 + 4x - 3)$.
 $(x-2)(-x^2 + 4x - 3) = -x^3 + 4x^2 - 3x + 2x^2 - 8x - 12 = -x^3 + 6x^2 - 11x + 6 = f(x)$.

• Soit
$$f(x) = \frac{-x^2 + 4x - 15}{3(x - 1)}$$
. Vérifier que $f(x) = -\frac{x}{3} + 1 - \frac{4}{x - 1}$ pour tout $x \ne 1$.

$$-\frac{x}{3}+1-\frac{4}{x-1}=\frac{-x(x-1)+3(x-1)-4\times3}{3(x-1)}=\frac{-x^2+x+3x-3-12}{3(x-1)}=\frac{-x^2+4x-15}{3(x-1)}=f(x).$$

1° Soit
$$f(x) = x^3 - 7x - 6$$
.
Vérifier que $f(x) = (x + 1)(x + 2)(x - 3)$.

2° Soit
$$f(x) = x^3 + 4x^2 - 3x - 18$$
.
Vérifier que $f(x) = (x - 2)(x + 3)^2$.

3° Soit
$$f(x) = -x^3 + 4x - 3$$
.
Vérifier que $f(x) = (x - 1)(-x^2 - x + 3)$.

1° Soit
$$f(x) = \frac{2x^2 - 5x + 3}{x - 2}$$

Vérifier que
$$f(x) = 2x - 1 + \frac{1}{x - 2}$$
.

$$2^{\circ}$$
 Soit $f(x) = \frac{-(x-4)^2}{2(x-2)}$.

Vérifier que
$$f(x) = \frac{-x}{2} + 3 - \frac{2}{x-2}$$

7.3. Trouver une forme par identification

On part de la forme cherchée, on calcule et on identifie à la forme de l'énoncé.

Exemple: soit
$$f(x) = \frac{2x^2 - 3x + 1}{x - 2}$$
. Trouver a , b et c tels que $f(x) = ax + b + \frac{c}{x - 2}$ pour $x \neq 2$.

$$ax + b + \frac{c}{x-2} = \frac{ax^2 - 2ax + bx - 2b + c}{x-2}$$
 que l'on identifie à $\frac{2x^2 - 3x + 1}{x-2}$ pour tout $x \neq 2$

$$ax + b + \frac{c}{x-2} = \frac{ax^2 - 2ax + bx - 2b + c}{x-2} \quad \text{que l'on identifie à} \quad \frac{2x^2 - 3x + 1}{x-2} \quad \text{pour tout } x \neq 2.$$

$$\text{Il suffit de choisir} \quad \begin{cases} a = 2 \\ -2a + b = -3 \\ -2b + c = 1 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = -3 + 2a = 1 \\ c = 1 + 2b = 3 \end{cases} \quad \text{D'où } f(x) = 2x + 1 + \frac{3}{x-2}, \text{ avec } x \neq 2.$$

Soit
$$f(x) = \frac{2x^2 + 5x - 1}{x + 1}$$
 pour $x \neq -1$.

Trouver les réels a, b et c tels que :

$$f(x) = ax + b + \frac{c}{x+1} \quad \text{sur } \mathbb{R} \setminus \{-1\} \ .$$

Soit
$$f(x) = \frac{-x^2 - x + 15}{x - 3}$$
 pour $x \neq 3$.

Trouver a, b et c tels que:

$$f(x) = ax + b + \frac{c}{x - 3} \quad \text{sur } \mathbb{R} \setminus \{3\} \ .$$

1 Fonction f

1.1. Les trois cadres et le vocabulaire correspondant

Par exemple, soit f une fonction définie sur un ensemble \mathscr{D} donnée par l'expression $f(x) = x^2 + 3x - 3$ et \mathscr{C}_f sa courbe représentative dans un repère du plan.

cadre fonctionnel : fonction f	cadre graphique : courbe \mathscr{C}_{f}	cadre numérique : réel $f(x)$
variable x image $f(x)$ $x \mapsto f(x)$	abscisse x ordonnée $f(x)$ point $M(x; f(x))$ sur la courbe \mathscr{C}_f $M(x; y) \in \mathscr{C}_f \iff y = f(x)$	pour calculer une image, on remplace x par un réel de \mathscr{D} dans l'écriture $f(x)$
$f(x) = x^2 + 3x - 3$ est l'expression de la fonction f	$y = x^2 + 3x - 3$ est l'équation de la courbe \mathcal{C}_f	$f(x) = x^2 + 3x - 3$ est la formule pour calculer $f(x)$

Attention ne pas confondre f, \mathscr{C}_f et f(x)!

- Dans chaque phrase, corriger les erreurs d'écriture ou de vocabulaire.
- Soit la fonction f définie sur \mathbb{R} par $f(x) = -x^2$.
- 1° L'équation x-4 est celle d'une droite \mathcal{D} .
- 2° La fonction f(x) est une parabole.
- 3° Le réel f(x) est le point de \mathscr{C}_f d'abscisse x.
- 4° Sur]-∞;0] la fonction f(x) est croissante.
- 5° L'équation y=f(x) est l'intersection de la courbe \mathscr{C}_f et de la droite \mathscr{D} .
- Dans chaque phrase, corriger les erreurs de raisonnement.
- 1° Soit $f(x) = x \frac{1}{x}$, pour $x \in]-\infty$; 0[.
- Pour obtenir l'image de 1, on résout f(x) = 1.
- 2° Soit \mathcal{C}_f la courbe d'équation $y = x^2 4$.
- Pour trouver le point d'intersection de \mathscr{C}_f avec l'axe (Ox), on remplace x par 0.
- 3° Le point A(1; -3) est un point de la courbe \mathscr{C}_f si f(-3) = 1.

1.2. Ensemble de définition et tableau des variations

En général, l'ensemble de définition est donné dans l'énoncé : c'est l'ensemble des x tels que l'expression f(x) existe ; on écrit «fonction f définie sur \mathcal{D}_f ».

Graphiquement, l'ensemble de définition se lit sur l'axe des abscisses en « aplatissant » la courbe sur l'axe des abscisses.

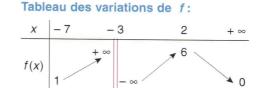
Exemple : La fonction f représentée ci-contre a pour ensemble de définition $[-7; -3[\ \cup\]-3; +\infty[$.

Énoncé des variations de la fonction f:

la fonction f est croissante sur [-7; -3[et sur]-3; 2]; la fonction f est décroissante sur $[2; +\infty[$.

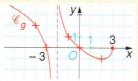
En 2, la fonction admet un maximum local : f(2) = 6.

3 est valeur interdite : on note une double barre dans le tableau.
 On peut compléter le tableau par les limites.

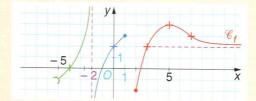


▶ voir TB 17

- Soit la fonction f représentée par la courbe \mathscr{C}_f . Corriger les erreurs.
- a) f est définie sur]-6;3].
- b) f(x) est croissante sur [2;3].
- c) f(x) existe sur $]-\infty$; 3].
- d) Le minimum de f est (2; -1).
- e) Le maximum de f est $+ \infty$.



Dresser le tableau complet des variations de la fonction f .



d'expression

Signe d'un produit

Lorsque l'on a un produit de facteurs, on dresse un tableau:

- en première ligne toutes les valeurs qui annulent le produit, placées dans l'ordre croissant des
- une ligne pour étudier le signe de chaque facteur, sans oublier le 0;
- en dernière ligne, on conclut le signe du produit en appliquant la règle des signes, sans oublier les 0.

	Exemple: soit	P(x)	=	-2x(4 - x	(X +	2)	ž
On	applique le prod	uit nul:						
		_		g.	_			

$$-2x = 0 \Leftrightarrow x = 0$$
; $4-x = 0 \Leftrightarrow x = 4$
 $x+2 = 0 \Leftrightarrow x = -2$.

X	- ∞		-2		0		4		+ ∞
- 2x		+	137	+	0	_		=	
4 – x		+		+	20	+	0	-	
<i>x</i> + 2		_	0	+	-,	+		+	
P(x)		_	0	+	0	_	0	+	

Étudier le signe des produits :

$$A(x) = \frac{4x}{3} (x+1)(3-x) ;$$

$$B(x) = \left(-\frac{x}{2} + 1\right)(4x + 3)$$
;

$$C(x) = (-3x+6)(x^2+1)$$
;

$$D(x) = -5x (x-1)^2.$$

Écrire sous la forme d'un produit de facteurs tous

$$A(x) = \frac{4x^2}{5} - 2x$$
; $B(x) = 9 - x^2$;

$$C(x) = 25x^2 - 5x$$
; $D(x) = x^3 + 4x$;

$$E(x) = (x^2 - 2x)(x+3)^2$$
;

$$F(x) = (x^2 - 4x + 4)(x^2 + 1) .$$

Signe d'un quotient

Lorsque l'on a un quotient de facteurs, on dresse un tableau:

- en première ligne toutes les valeurs qui annulent le numérateur ou le dénominateur, placées dans l'ordre croissant des valeurs,
- une ligne pour étudier le signe de chaque facteur, sans oublier le 0,
- en dernière ligne, on conclut le signe du quotient en appliquant la règle des signes, sans oublier les zéros aux valeurs annulant le numérateur et la double barre à la valeur interdite.

Soit
$$Q(x) = \frac{4x^2 + x}{-x + 3} = \frac{x(4x + 1)}{-x + 3}$$
.
 $x(4x + 1) = 0 \Leftrightarrow x = 0$ ou $x = -1/4$
 $-x + 3 = 0 \Leftrightarrow x = 3$, valeur interdite.

X	- ∞	$-\frac{1}{4}$		0		3		+ ∞
X	-		-	0	+		+	
4 <i>x</i> + 1	-	0	+		+		+	
-x + 3	0 +0	neffne:	+		+	0	-	10.5
Q(x)	+	0	-	0	+		_	

Étudier le signe des quotients suivants : 1° $A(x) = \frac{4x-3}{3-2x}$; $B(x) = \frac{x+3}{3x}$;

1°
$$A(x) = \frac{4x-3}{3-2x}$$
; $B(x) = \frac{x+3}{3x}$

$$C(x) = \frac{1-x}{x} .$$

$$2^{\circ} A(x) = \frac{2x-3}{2x+3}$$
; $B(x) = \frac{x(4-x)}{3+x}$

$$C(x) = \frac{(-2x+1)(x-1)}{2-x}$$
; $D(x) = \frac{4x^2-4x}{2x+1}$

Écrire sous la forme d'un quotient et étudier le

$$A(x) = \frac{2x+3}{x} + \frac{9}{x-6} \; ; \quad B(x) = \frac{1}{x} - \frac{4}{3} - \frac{x-2}{3x} \; ;$$

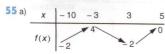
$$C(x) = \frac{2}{x+1} - \frac{x-2}{x-1}$$
; $D(x) = \frac{x-2}{4} + \frac{x+1}{2x} - \frac{x^2+1}{x}$;

$$E(x) = \frac{2x-1}{2x+1} - \frac{5}{2x^2 + x} + \frac{1}{2x}$$

CORRIGÉS

52 b) {-4;5}; {0;5}; {-2;3;8}; $\{-1; 8\}$. c) f(x) = 7 . d) $\{-2; 5; 11\}$.

53 a) $[-3;0] \cup [8;12]$.b) $]-4;4[\cup]7;+\infty[$. 54 a)] -1;8[; b) $x \in [-4;5] \cup]6; +\infty[$: $f(x) \ge 0$;



b) A(-8;0) , B(1;0) et C(5;0) ;

c) $S =]-8; 1[;d) S = [-10;-6[\cup]0;5]$.

Fonctions affines et droites

56 a) $f(x) = \frac{1}{2}(x+2) + 1 = \frac{1}{2}x + 2$.

b)
$$f(x) = \frac{1}{3}(x - 702) + 237 = \frac{1}{3}x + 3$$
.

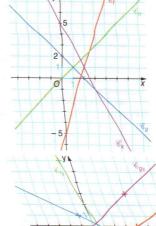
c)
$$f(x) = -0.8x + 2.4$$
 . d) $f(x) = -\frac{4}{3}x + \frac{5}{6}$.

57 a) Fonction affine: a = 12; f(x) = 12x + 25.

b) Non affine: CM = 0.97.

58 1° f et h croissantes;

g et kdécroissantes



60 Seule 33 ne représente pas une fonction affine.

 \mathfrak{D}_1 : $y = -\frac{2}{3}x + 2$; \mathfrak{D}_2 : $y = -\frac{5}{3}x - 4$;

 \mathfrak{D}_3 : x = -1; \mathfrak{D}_4 : $y = \frac{3}{5}x - \frac{1}{5}$

63 1°7;0;9;2;5;6;1.

2° 9; 12; 5; 6; 7; 2; 2.

 $\mathfrak{D}_1: \quad y = \frac{1}{3}x - 2 \; ;$

 \mathfrak{D}_3 : x = 3; \mathfrak{D}_4 : y = 5; \mathfrak{D}_5 : $y = \frac{1}{3}x + 2$.

61 33 : non la représentation d'une fonction affine.

 $\mathfrak{D}_2: \quad y = -\frac{3}{5}(x-2) + 1 \quad \Leftrightarrow \quad y = -\frac{3}{5}x + \frac{11}{5};$

66 a)
$$x$$
 5 c x -3 $5x-25$ - 0 + $-6x-18$ + 0 -

$$\frac{1}{5}$$
 x 1/6 $-\frac{4}{5}x + \frac{2}{15}$ + 0 -

67 a) $(x-3)^2 \ge 0$, nul en 3. b) $4x^2 + 1 > 0$,

c) $(4x^2-x)^2 \ge 0$, null en 0 et $\frac{1}{4}$. d) $-x^2+1<0$,

e) $\left(-1-x\right)^2\geqslant 0$, nul en - 1. f) $9x^2+25>0$, toujours.

68 On a $x \le 0$, donc:

a) 3x est négatif; b) -5x est positif;

c) $-(x)^2$ est négatif; d) $-x^2-4$ est négatif;

e) $x^2 + 1$ est positif.

69 On a x > 4, alors x - 4 > 0.

a) x - 4 positif; b) -2x + 8 = -2(x - 4) négatif;

c) -3x est négatif, x-4 positif : -3x(x-4) négatif.

70 a)
$$\frac{-3x+2}{3}$$
; b) $\frac{-x+1}{x+3}$; c) $\frac{x^2-x+1}{2x}$;
d) $\frac{(x+4)(x-1)}{3x}$; e) $\frac{3x(-2+x)}{x+2}$.

 $D(x) = \frac{x(4x-4)}{2x+1}$.

$$\frac{x - 1/2 \quad 0 \quad 1}{D(x) - + 0 - 0 + 2}$$
74. $A(x) = \frac{2x^2 - 18}{x(x - 6)} = \frac{2(x + 3)(x - 3)}{x(x - 6)}$.

•
$$C(x) = \frac{-x^2 + 3x}{(x+1)(x-1)} = \frac{x(-x+3)}{(x+1)(x-1)}$$

•
$$D(x) = \frac{x^2 + 2}{4x}$$
 $x = 0$ $D(x) = x$

•
$$E(x) = \frac{4x^2 - 9}{2x(2x+1)} = \frac{(2x+3)(2x-3)}{2x(2x+1)}$$

Traitement des données

75 a) $\frac{15}{12}$ = 1,25 = $\frac{5,45}{4,36}$ = $\frac{-7,125}{-5,7}$: L2 = 1,25 × L1. b) Oui, L2 = $\frac{10}{3} \times L1$.

76 a)
$$\frac{5 \times 2.4}{-2} = -6$$
; b) $\frac{0.05 \times 18000}{0.75} = 1200$.

11 a) x = 3; b) x = 24.

78 a)
$$x = \frac{12 \times 5}{37} = \frac{60}{37}$$
; b) $x = \frac{4 \times 3}{5} = \frac{12}{5}$;

c)
$$x = \frac{-3 \times 5}{2} = \frac{-15}{2}$$
; d) $x + 2 = \frac{4 \times 69}{23}$. $x = 10$.

; $\mathcal{E}_{7,5} = -5 \times \mathcal{E}_{7,7} = -5 \times \mathcal{E}_{7,$

$$\mathbf{79} \ y = 6x .$$

 $\frac{-14,45}{-1,3} = 11,1$, b = 2,5x; $1,5 \times 12 = 6$; $1,5\times(-2) = -3$; $\frac{10,5}{1.5} = 7$.

81 Entrer les valeurs en list 1 de la calculatrice et

 $F(x) = (x-2)^2(x^2+1)$ toujours positif ou nul en 2.

82 $\frac{0 \times 136 + 1 \times 77 + \dots + 5 \times 3}{136 + 77 + \dots + 3} = 1,1 \quad ;$ soit 1,1 enfant par famille

demander: mean(L1) . $\bar{x} = 11$

83
$$\bar{x} = \frac{14 \times 37500 + 80900}{15} = 40300$$
.
84 $\frac{4 \times 9.8 + (15 - 11)}{15} = 10.8$.

85 a) 0+2+4-2.5+3-0.5+1+5=12.

D'où $10 + \frac{12}{8} = 11,5$ de moyenne pour Maud.

b) -1-1.5+6-2.5+2+0.5=3.5 pour 6 notes.

Valentin: $10 + \frac{3.5}{6} \approx 10.58$. c) Justine: 10.86 . 86 On entre 189; 370; 127; 433; 156 et 238;

de moyenne $\bar{y} = \frac{1513}{6} \approx 252$. $\bar{x} \approx 5,687252$.

utions

12 - Techniques de base

1. Calcul algébrique

1. Équation de base

1 a) -4; b)
$$-\frac{1}{2}$$
; c) 0; d) 3; e) 3; f) $\frac{1}{3}$.

2 a) 0; b)
$$\frac{1}{3}$$
; c) 4; d) 3; e) $\frac{5}{2}$; f) 0.

$$31^{\circ}$$
 a) $x(-4x+1) = 0 \iff x = 0 \text{ ou } x = \frac{1}{4}$. b) $x = -1$ ou $x = 1$.

c)
$$x\left(-x+\frac{5}{2}\right) = 0 \iff x = 0 \text{ ou } x = \frac{5}{2} \text{ . d) } x^2 = \frac{1}{4} \iff x = \frac{-1}{2} \text{ ou } x = \frac{1}{2} \text{ .}$$

$$2^{\circ} \text{ a) } x^2 = \frac{4}{9} \iff x = -\frac{2}{3} \text{ ou } x = \frac{2}{3} \text{ . b) } \frac{4}{3} \, x^2 \, (x-9) = 0 \iff x = 0 \text{ ou } x = 9 \text{ .}$$

41° a)
$$x (5x-4) = 0 \iff x = 0 \text{ ou } x = \frac{4}{5}$$
.

b)
$$3x^2 - 9 = 0 \iff x^2 = 3 \iff x = -\sqrt{3} \text{ ou } x = \sqrt{3}$$

On se ramène à
$$\boxed{}$$
 = 0 et on isole x^2 , car il n'y a plus x .

c) Différence de deux carrés :
$$a^2 - b^2 = (a + b)(a - b)$$
.

$$(4x+3)(2x+2) = 0 \Leftrightarrow x = -\frac{1}{2} \text{ ou } x = -1.$$

d)
$$x^2 = 9 \iff x = -3 \text{ ou } x = 3$$
.

2° a) On multiplie par
$$\frac{3}{2}$$
: $x^2 = 2x \Leftrightarrow x(x-2) = 0 \Leftrightarrow x = 0$ ou $x = 2$.

b) Différence de deux carrés :
$$a^2 - b^2$$

$$\left(\frac{8}{5}x - \frac{3}{5}\right)\left(\frac{2}{5}x - \frac{3}{5}\right) = 0 \iff x = \frac{3}{8} \text{ ou } x = \frac{3}{2}.$$

5 1° a) Valeur interdite 1. On résout
$$4x - 3 = 0 \iff x = \frac{3}{4}$$
 non interdite

b) -2 est V.I.
$$x^2 - 2x = 0 \Leftrightarrow x(x - 2) = 0 \Leftrightarrow x = 0$$
 ou $x = 2$ non interdites.

$$2^{\circ}$$
 a) 8 est V.I. Au numérateur : $a^2 - b^2$ $(x+2)(x-8) = 0 \Leftrightarrow x = -2$ non interdite, ou $x=8$ interdite.

$$(x+2)(x-6) = 0 \Leftrightarrow x = -x$$

- 2 est la seule solution.

b)
$$\frac{1}{2}$$
 est V.I. **Attention**, on ne peut pas simplifier. $a^2 - b^2$ au numérateur :

$$(3x-1)(x-1)=0 \Leftrightarrow x=\frac{1}{3}$$
 ou $x=1$ non interdites.

61° a) – 1 est V.I. On multiplie par
$$x + 1 \neq 0$$
:

on résout
$$3 = 4(x + 1) \Leftrightarrow x = -\frac{1}{4}$$
 non interdite

b)
$$\frac{3}{2}$$
 est V.I. On multiplie par $2x - 3 \neq 0$:

$$x + 2 = 1(2x - 3) \Leftrightarrow x = 5$$
 non interdite

c) 0 est valeur interdite.

On résout $x^2 - 9 = 0 \Leftrightarrow x = -3$ ou x = 3 non interdites.

$$2^{\circ}$$
 a) 1 est V.I. $4 = 3(x-1) \iff x = \frac{7}{3}$ non interdite.

b) - 4 est V.I. On résout :
$$2 - x = 2(x + 4) \Leftrightarrow x = -2$$
 non interdite.

c) 0 est V.I. On résout :
$$4(x+2) = 5(-2x) \Leftrightarrow x = -\frac{4}{7}$$
 non interdite.

2. Second degré

7 a)
$$\Delta = b^2 - 4ac = 81$$
; $\sqrt{\Delta} = 9$,

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{7 - 9}{8} = -\frac{1}{4}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{7 + 9}{8} = 2$.

b)
$$\Delta = 16$$
 ; $\sqrt{\Delta} = 4$; $x_1 = 3$ et $x_2 = -1$.

c)
$$\Delta = -3$$
 , négatif, donc pas de solution.

d)
$$\Delta = \frac{961}{100}$$
; $\sqrt{\Delta} = \frac{31}{10}$; $x_1 = \frac{5}{2}$ et $x_2 = -\frac{8}{3}$.

8 a)
$$\Delta = 72$$
; $\sqrt{\Delta} = 6\sqrt{2}$. $x_1 = \frac{4 - 6\sqrt{2}}{2} = \frac{4}{2} - \frac{6\sqrt{2}}{2} = 2 - 3\sqrt{2}$ et $x_2 = 2 + 3\sqrt{2}$.

b)
$$\Delta = 192$$
; $\sqrt{\Delta} = 8\sqrt{3}$. $x_1 = \frac{-4 - 8\sqrt{3}}{-8} = \frac{4}{8} + \frac{8\sqrt{3}}{8} = \frac{1}{2} + \sqrt{3}$ et $x_2 = \frac{1}{2} - \sqrt{3}$.

c)
$$\Delta=32$$
 ; $\sqrt{\Delta}=4\sqrt{2}$. $x_1=\frac{1}{2}+\sqrt{2}$ et $x_2=\frac{1}{2}-\sqrt{2}$.

d)
$$\Delta = 20$$
; $\sqrt{\Delta} = 2\sqrt{5}$. $x_1 = \frac{4 - 2\sqrt{5}}{6} = \frac{2(2 - \sqrt{5})}{2 \times 3} = \frac{2 - \sqrt{5}}{3}$ et $x_2 = \frac{2 + \sqrt{5}}{3}$.

9 a)
$$x = \frac{7}{12}$$
 ou $x = \frac{43}{10}$. b) $x = 100$ ou $x = \frac{12}{5}$. c) $x = 12$ ou $x = -56$.

10 a)
$$a = 5 > 0$$

$$\Delta = -104 < 0$$

pas de racine (pas de solution à P(x) = 0)

b)
$$a = -1 < 0$$

$$\Delta = 784$$
; $x_1 = 20$ et $x_2 = -8$

c)
$$a = 0.5 > 0$$
.

$$\Delta = 1$$
; $x_1 = 2$ et $x_2 = 4$

d) a = -3 < 0.

$$\Delta = 2\ 238\ 016$$
; $x_1 = 500$ et $x_2 = \frac{4}{3}$

3. Calculs sur les fractions

11
$$A(x) = \frac{-x^2 + 4x + 3}{x}$$
; 0 est V.I. $B(x) = \frac{-x^3 + 3x^2 + 2}{x}$; 0 est V.I.

$$C(x) = \frac{-1 + 2x}{2x}$$
; 0 est V.I. $D(x) = \frac{12x - 17}{6x}$; 0 est V.I.

$$A(x) = \frac{4(x-2) - 3x(x-2) + x}{x(x-2)} = \frac{-3x^2 + 11x - 8}{x(x-2)}$$

b) 2 est V.I. et
$$B(x) = \frac{3x - 11}{x - 2}$$
. c) 0 est V.I. et $C(x) = \frac{x^2 - x - 2}{x^2}$.

d) 0 est V.I. et
$$D(x) = \frac{x+3 \times 2x - 2(x+1)}{2x^2} = \frac{5x-2}{2x^2}$$

13 a) -2 est V.I. et
$$A(x) = \frac{3x^2 + 4x - 3}{x + 2}$$
. b) 1 est V.I. et $B(x) = \frac{-2x^2 + x - 3}{1 - x}$

c) 0 et 1 sont V.I. DC =
$$2x(x-1)$$
 . $C(x) = \frac{2 \times 2x - (x-1)}{2x(x-1)} = \frac{3x+1}{2x(x-1)}$

d) 0 est V.I.
$$D(x) = \frac{4x^2 + 3x + 4}{4x^2}$$

14 a) 0 est V.I. DC =
$$2x^2$$
. $A(x) = \frac{2x^2 + 7x + 1}{2x^2}$.

b) 0 est V.I. DC =
$$3x^2$$
. $B(x) = \frac{4x-3}{3x^2}$

c) 0 et 2 sont V.I.
$$DC = x(x-2)$$
.

$$C(x) = \frac{x(2x+1) - (x^2 - 3) + 3(x - 2)}{x(x - 2)} = \frac{x^2 + 4x - 3}{x(x - 2)}$$

15 a)
$$-\frac{3}{2}x(x^2+4)$$
; b) $\frac{1}{4}(4-x)(1-2x) = \left(1-\frac{x}{4}\right)(1-2x)$;

c)
$$-5x^2(x-4)$$
; d) $\frac{1}{4}(3x+2)(x-4) = (3x+2)(\frac{x}{4}-1)$

16 a) 0 et 4 sont valeurs interdites.
$$A(x) = \frac{-2(x-4)}{x(x-4)} = \frac{-2}{x}$$

b) 2 et 3 sont V.I.
$$a^2 - b^2$$
 au numérateur : $B(x) = \frac{(x-2)(x-4)}{(x-3)(x-2)} = \frac{x-4}{x-3}$

c) 2 est valeur interdite.
$$C(x) = \frac{(2+x)(2-x)}{4(x-2)} = \frac{(2+x)(-1)}{4} = \frac{-2-x}{4}$$
,

car
$$2 - x = (-1)(x - 2)$$
.

d)
$$a^2 - b^2$$
 au dénominateur. V.I. = $-\frac{1}{4}$ et $\frac{3}{4}$.

$$D(x) = \frac{(4x-1)(4x-3)}{(4x-1)(-4x+3)} = \frac{-4x+1}{4x+1}$$

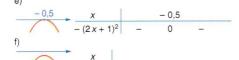
CORRIGES

4. Signe d'expressions

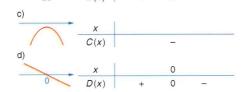
11 a)					
	X		12		
12	X /3 - 4	-	0	+	

b)
$$\frac{x}{\left|1-\frac{x}{2}\right|^2} + 0 +$$

$$\begin{array}{c|cccc}
c) & x & 0 \\
\hline
 & -3x \\
\hline
 & 5 & + 0 & -
\end{array}$$







19

X	- ∞	0		1	+ ∞		
- 5 <i>x</i>	+	0	-		-	0	-5x
$x^2 + 9$	+		+		+		
$(x-1)^2$	+		+	0	+		$x^2 + 9$
A(x)	+	0	-		-		
							$(x-1)^2$

x	- ∞	- 1		1		<u>5</u>	+ ∞		-4x + 5
-4x + 5	+		+		+	0	-	5	47 1 0
$x^2 - 1$	+	0	_	0	+		+	4	
B(x)	+		-		+	0	_	-1 1	$x^2 - 1$

X	- ∞	$-\frac{1}{3}$		1		9	+ ∞	1 /1	$3x^2 - 2x - 1$
$3x^2 - 2x - 1$	+	0	-	0	+		+	$-\frac{1}{3}$	
9 – x	+		+		+	0	-		
C(x)	+	0	-	0	+		-	9	9 – <i>x</i>

X	- ∞	3	+	- ∞ 3	$-(x-3)^2$
$-(x-3)^2$	-	0	-		- (x - 3)
$x^2 + 1$	+		+		
D(x)	-	0	-	\ /	
					$x^2 + 1$

20

X	- ∞	0		3	+ ∞		<u>2x</u>
2x 3	_	0	+		+	0	3
$(x-3)^2$	+		+	0	+		$(x-3)^2$
A(x)	_	0	+	0	+	3	(X 0)

X	- ∞		- 4		0	+ ∞
- 4 x		+		+	0	
x + 4		-	0	+		+
$x^2 + 4$		+		+		+
B(x)		-	0	+	0	-

X	- ∞	0		1/2	+ ∞	\ /	
$(2x-1)^2$	+		+	0	+	1	$(2x-1)^2$
4 x	_	0	+		+	2	
C(x)	-		+	0	+		4 x
						0	4 X

X	- ∞	- 3	3	1		3		4	+ ∞	1	$x^2 - 5x + 4$
$x^2 - 5x + 4$	+		+	0	_		_	0	+	1 4	
$9 - x^2$		- 0	+		+	0	-		_		
D(x)		-	+	0	_		+	0	-		$9 - x^2$

21
$$A(x) = \frac{(-x+1)(x-1)+4}{x-1} = \frac{-x^2+2x+3}{x-1}$$
.

Х	- ∞	- 1		1		3	+ ∞		2 2 2
$-x^2 + 2x + 3$	-	0	+		+	0	-	- 1/3	$-x^2+2x+3$
x – 1	_		-	0	+		+		
A(x)	+	0	-		+	0	-		x – 1

$$B(x) = \frac{\left(\frac{2}{3}x - 1\right)(x + 2) + 1}{x + 2} = \frac{\frac{2}{3}x^2 + \frac{1}{3}x - 1}{x + 2} \ .$$

	X	- ∞	- 2		$-\frac{3}{2}$		1	+ ∞		$\frac{2}{3}x^2 + \frac{1}{3}x + 1$
2	$x^2 + \frac{1}{3}x + 1$	+		+	0	_	0	+	$-\frac{3}{2}$ 1	3 3
	x + 2	-	0	+		+		+	-2	x + 2
	D(v)			- 3	0		0	1.		

$$C(x) = \frac{2x^2 - 5x - 18}{x(x-6)} \ .$$

X	- ∞	- 2	0	9 2	6	+ ∞	
$2x^2 - 5x - 18$	+	0 -	_	0 +	-	+	-2
x(x - 6)	+	+	0 -	_	- 0	+	
C(x)	+	0 -	+	0 -	-	+	0

$$D(x) = \frac{3x^2 - 4x + 1}{x(x+1)} \ .$$

X	- ∞	- 1		0		1/3		6	+∞	1 /1
$3x^2 - 4x + 1$	+		+		+	0	_	0	+	$\frac{1}{3}$
x(x-1)	+	0	_	0	+		+		+	
D(x)	+		_		+	0	_	0	+	-1 0

22
$$A(x) = \frac{-x^2 + 3x - 5}{2x}$$
.

X	- ∞		0		+ ∞	_
$-x^2 + 3x - 5$	-	_,		-		
2 <i>x</i>	-		0	+		
A(x)	-	+				0

$$B(x) = \frac{3x^2 - 4x + 1}{x^2 + 2x}$$

X	- ∞	_	2		0		1/3	3	1		+ ∞		-	
$3x^2 - 4x + 1$	+			+		+	0	_	0	+		3	1	
$x^{2} + 2x$	+	. ()	_	0	+		+		+				,
B(x)	+	-		-		+	0	-	0	+		-2	1	0

5. Systèmes

- **23** a) $\int 3x 5y = 10$ unique solution. 5x - 3y = 30
 - $\int x + 5y = 10$ x + 5y = 10

mêmes équations : infinité de solutions.

c) $\int x - 4y = 12,5$

 $4\times12,5\neq5$, donc pas de solution.

- d) Unique solution.
- 24 a) (3; -1); b) (1; 2); c) (2; 1); d) Pas de solution.
- 25 a) (0;1;2); b) (-1;1;-2).
- 26 a) (2; -1; 3); b) (0; 3; 2).
- **27** a) a = 3; b = -4 et c = 1: une solution (3; -4; 1).
- b) a = -3; b = 0 et c = 1: une solution (-3; 0; 1).
- 28 a) a = -2; b = 1 et c = 4.
- b) Multiplier la 3^e par 2: 2b+c=5. D'où a=1; b=-3 et c=1.

6. Puissances et chiffres significatifs

- **29** a) $3^{n+2+2n-n-3} = 3^{2n-1}$. b) $2^{n+1-n-2n} = 2^{-2n+1}$.
- c) $\frac{2^n \times 3^n}{2^{2n-2}} = 2^{n-2n+2} \times 3^n = 2^{-n+2} \times 3^n$.
- 31 a) $5^n \times 5^{-1} \times 2^n \times 2 = \frac{2}{5} \times 10^n$; b) $3^2 \times \frac{2^n}{3^n} = 9 \times \left(\frac{2}{3}\right)^n$.
- c) $2^2 \times 3^{2\,n} \times 3^2 \times 3^{-n} = 4 \times 9 \times 3^n = 36 \times 3^n$
- d) $2^n \times 2^{-3} \times 3^n \times 3^{-2} = \frac{1}{8 \times 9} \times (2 \times 3)^n = \frac{1}{72} \times 6^n$.
- e) $5 \times 2^n \times 2 3 \times 2^n = 2^n \times (10 3) = 7 \times 2^n$.
- f) $-3 \times 2^{2n} + 5 \times 2^{2n} \times 2^3 = 2^{2n} (-3 + 5 \times 8) = 37 \times 2^{2n}$.
- 32 a) $(2^2)^{n+1} \times 3 \times 3^{-n} \times 2^{-n} \times 2^{-2} = 2^2 \times 3 \times 2^{-2} \times 2^{2n} \times 3^{-n} \times 2^{-n} = 3 \times \left(\frac{2}{3}\right)^n$.
- b) $\frac{2^{2n} \times 2^{n-1}}{2^{3n-1} \times 3^n} = \frac{2^{2n+n-1-3n+1}}{3^n} = 2^0 \times 3^{-n} = 3^{-n} \; .$
- c) $3^{2n} \times 3^{-4} \times 2^n \times 2 \times (2 \times 3)^{-n+1} = 2 \times 2 \times 3^{-4+1} \times 3^{2n} \times 2^n \times 2^{-n} \times 3^{-n}$
- 33 a) $\alpha = \frac{-b}{2a} = \frac{-0.6}{-0.004} = \frac{60}{4} = 15$. $\Delta = b^2 4ac = 0.36 + 0.04 \times 3 = 0.6$.
- b) $\alpha = \frac{-0.2}{0.02} = -10$. $\Delta = 0.04 + 0.04 = 0.08$.
- c) $\alpha = \frac{-0.4}{-0.01} = 40$. $\Delta = 0.16 + 0.02 \times 3 = 0.22$.
- d) $\alpha = -20$ et $\Delta = 0.0264$.
- e) $\alpha = \frac{400}{4\,000} = \frac{1}{10} = 0.1$. $\Delta = 160\,000 40 \times 2\,000 = 80\,000$.
- f) $\alpha = \frac{-20}{-600} = \frac{1}{30}$. $\Delta = 400 20 \times 300 = -5600$.
- 34 A(x) = 2.43 1.23 + 2 = 3.2.
- $B(x) = \frac{12 \times 10^4 43.2 \times 10^4}{12^4} = 12 43.2 = -31.2.$
- C(x) = 530,4 + 435 0,4 = 965
- D(x) = 0.85 + 0.5 4.3 = -2.95

- 35 Résultats arrondis à 3 chiffres significatifs.
- a) 7,87; b) 38 000; c) 19,7; d) 1 100

2.03^3*0.972 7.871030264 (1-0.02)^5*42000 37964.67347 (53*1.3^2)/(0.21 *2.4^3)-100/9 19.74275243 (1-1.07^10)/(1-1 .07)*53*1.07^6 1098.942429

- 36 Résultats arrondis à 4 chiffres significatifs.
- a) $1.051 \times 10^{-3} = 1,051$; b) $5.177 \times 10^{-4} = 0,5177$; c) $9.416 \times 10^{-2} = 94.16$;

1.03*1.12*0.98*0

20*0.98*(1-0.98^ 5)/(1-0.98) 2118.675158

7. Transformations d'écritures

- 37 $A(x) = -\frac{x}{2} + 3 \frac{4}{2x}$; 0 est valeur interdite. $B(x) = 4 + \frac{5}{x} + \frac{1}{x^2}$; 0 est V.I.

$$D(x) = -3x + \frac{50\sqrt{3}}{3} \ .$$

- 38 1° On développe :
- $(x + 1)(x + 2)(x 3) = (x^2 + 3x + 2)(x 3)...$
- 2° Développer le carré en premier.
- 3° On développe.
- 39 1° On réduit au même dénominateur.
- Aédaction, ne pas commencer par f(x) = ...2° Réduire au même dénominateur la 1^{re} forme.
- Développer la 2e forme.
- 40 $f(x) = 2x + 3 \frac{4}{x+1}$ sur $\mathbb{R} \setminus \{-1\}$.
- **41** $f(x) = -x 4 + \frac{3}{x 3}$ sur $\mathbb{R} \setminus \{3\}$.

2. Méthodologie

▶ Voir TB14

2. Analyser les verbes d'un énoncé

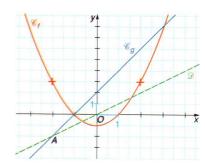
- **42** a) P(-2) = -4 4 + 15 = 7
- b) $P(3) P(\sqrt{5}) = 2 2\sqrt{5} \approx -2,47$
- c) On développe $-(x-1)^2 + 16$.
- d) P(2) = 15 et P(0) = 15. Donc P(2) = P(0).
- e) Si $x_1 > x_2 > 1$, alors $-(x_1 1)^2 + 16 < -(x_2 1)^2 + 16$. D'où $P(x_1) < P(x_2)$.
- f) $P(1-h) = -h^2 + 16$.
- g) $P(x) = 15 \Leftrightarrow x(-x+2) = 0 \Leftrightarrow x = 0 \text{ ou } x = 2$.
- h) $P(x) \ge 16 \iff -(x-1)^2 \ge 0$.

seule solution : $x - 1 = 0 \iff x = 1$.

i)
$$P(x) \le 15 \iff x(-x+2) \le 0$$
.

$$S =]-\infty$$
; 0] \cup [2; + ∞ [.

- 43 a) \mathscr{C}_{t} est la translatée de \mathscr{P} d'équation $y = x^{2}$ par la translation de vecteur $-\vec{j}$. b) f est une fonction du 2^e degré, croissante sur $[0; +\infty[$ et décroissante sur $]-\infty$; 0]. Son minimum est f(0)=-1.
- c) Les solutions sont les abscisses des points d'intersection de $\,\mathscr{C}_t\,$ et $\,\mathscr{C}_g\,$.
- $S = \{ -1 ; 3 \}$.
- d) Les solutions sont les abscisses des points de $\,\mathscr{C}_{\!_f}\,$ situés au-dessus de $\,\mathscr{C}_{\!_g}\,.$
- $\mathcal{S}=\left]-\right.1$; 3[.
- e) $A \in \mathcal{D}$ $A \in \mathcal{C}_g$ $\Leftrightarrow \begin{cases} y = x \\ y = 2x + 2 \end{cases}$



4. Fonction affine et droite

61 1° On cherche f telle que f(q) = aq + b.

$$\frac{q}{f(q)} = \frac{1,5}{4,5} \qquad a = \frac{\Delta f(q)}{\Delta q} = \frac{15 - 4,5}{4 - 1,5} = 4,2 \ .$$

$$f(q) = 4.2(q-4) + 15 = 4.2q - 1.8$$
.

 $2^{\circ} f(5.8) = 22.56$.

Coût marginal de 22,56 k€ par tonne ou 22,56 € par kg.

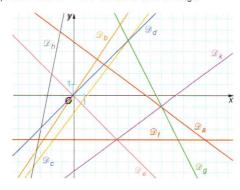
62 a) On cherche une fonction affine P(x) = ax + b.

$$a = -\frac{150}{1000} = -0.15$$
 et en $x = 30$, $P(30) = \frac{2500}{1000} = 2.5$.

D'où P(x) = -0.15(x-30) + 2.5 = -0.15x + 7.

b) En 2005, on a x = 35 et P(35) = 1.75.

Donc la population sera de 1 750 habitants dans le village.



64 Attention aux unités !

$$\mathcal{D}_1: y=-\,2\,x+\,4\;.\qquad \mathcal{D}_2: y=-\,3\,x\;.$$

$$\mathcal{D}_3: y = \frac{2}{5}(x+4) + 0 \iff y = \frac{2}{5}x + \frac{8}{5}$$

$$\mathcal{D}_4: y = 3(x-1.5) - 3 \iff y = 3x - 7.5$$

$$\mathcal{D}_5: y = -6(x+1) - 2 \iff y = -6x - 8$$

5. Nombre dérivé et tangente

65 a)
$$f(2+h) = 2h + 5 - \frac{1}{2+h} = \frac{2h^2 + 9h + 9}{2+h}$$
. $f(2) = 5 - \frac{1}{2} = \frac{9}{2}$.

$$f(2+h)-f(2)=\frac{2\,h^2+9\,h+9}{2+h}-\frac{9}{2}=\frac{4\,h^2+18\,h+18-18-9\,h}{2\,(2+h)}=\frac{4\,h^2+9\,h}{2\,(2+h)}$$

$$\frac{f(2+h)-f(2)}{h}=\frac{\cancel{h}(4h+9)}{\cancel{h}[2(2+h)]}=\frac{4h+9}{4+2h}$$

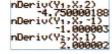
Si $h \to 0$, alors $\frac{4h+9}{4+2h} \to \frac{9}{4}$. Donc le nombre dérivé de f en 2 est $f'(2) = \frac{9}{4}$.

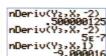
nDeriv(Y1,X,2) 2.250000063

66 a)
$$f'(x) = -2x - \frac{3}{x^2}$$
; $f'(2) = -4.75$ et $f'(-1) = -1$

b)
$$f'(x) = \frac{2}{x^2}$$
; $f'(1) = 2$ et $f'(-2) = 0.5$.

c)
$$f'(x) = \frac{-8}{x^3} - 1$$
; $f'(-2) = 0$ et $f'(1) = -9$.





67 a) f(1) = 4; f'(1) = 0, tangente horizontale. Tangente en B: y = 4.

b) f(-2) = 0; f'(-2) = 3. Tangente en $C: y = 3(x+2) + 0 \iff y = 3x + 6$.

68 a)
$$f'(x) = \frac{-5}{(x-2)^2}$$
.

b) f(1) = -1 et f'(1) = -5. Tangente $T: y = -5(y-1) - 1 \Leftrightarrow y = -5x + 4$.

c)
$$f(0) = \frac{3}{2}$$
 et $f'(0) = \frac{-5}{4}$. Tangente T' : $y = -\frac{5}{4}x + \frac{3}{2}$.

69 a)
$$f(-3) = 5$$
; $f'(0) = \frac{-2}{3}$; $f(6) = 5$; $f'(-3) = 0$.

b)
$$g(-3) = 2$$
; $g'(0) = \frac{1}{3}$; $g(6) = 5$; $g'(-3) = 1$.

c) En
$$E(5; 2)$$
, $f'(5) = \frac{3}{2}$. D'où $y = \frac{3}{2}(x-5) + 2 \iff y = \frac{3}{2}x - \frac{11}{2}$.

En D(3;0), la tangente est l'axe des abscisses : y = 0.

6. Fonctions associées

71 a) On ajoute 4 aux ordonnées, et on garde les abscisses.

b) On ajoute 3 aux abscisses et mêmes ordonnées.

$$\begin{array}{c|cccc}
x & 3 & 6 & 11 \\
\hline
f(x) & 2 & & 5
\end{array}$$

c) On enlève 1 aux abscisses et on enlève 5 aux ordonnées.

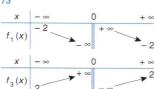
d) On garde les abscisses, on multiplie les ordonnées par -2 et on ajoute 3.

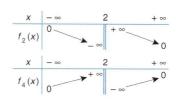
$$x = 0$$
 3 8 $f(x) = -7$

$$f(0) = -2 \times u(0) + 3 = -2 \times 2 + 3 = -1 \ .$$

72 On réduit au même dénominateur.

f est associée à $x \mapsto \frac{2}{x}$, par translation de $\vec{i} + 3\vec{j}$.





7. Fonction trinôme du second degre

70 $A(x): a = -\frac{2}{5}$; b = 3; c = 0. $B(x): a = \frac{1}{4}$; $b = \frac{5}{4}$; $c = \frac{-3}{4}$. $C(x): du 3^e$ degré. D(x): a = -3; b = -25; c = 400.

75 On calcule $\alpha = \frac{-b}{2a}$ et $\beta = P(\alpha)$.

a)
$$P(x) = \left(x - \frac{5}{2}\right)^2 - \frac{21}{4}$$
. b) $A(x) = -(x - 1)^2 - 2$.

c)
$$B(x) = -0.1\left(x - \frac{5}{2}\right)^2 - \frac{3}{8}$$
. d) $C(x) = -0.03(x + 2)^2 + \frac{3}{25}$

e)
$$R(x) = -\frac{2}{3}\left(x - \frac{3}{16}\right)^2 - \frac{125}{128}$$
. f) $T(x) = \frac{1}{2}\left(x - \frac{1}{3}\right)^2 + \frac{17}{18}$

76 \mathscr{C} , et $E(x) = (x-3)^2 - 1$,

car son sommet est S(3;-1).

 \mathcal{C}_2 de sommet $S_2(0;3)$ et $A(x) = -x^2 + 3$.

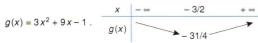
 \mathscr{C}_3 coupe l'axe des abscisses en 0 et 3 et est tournée vers le bas, donc $B(x) = -x^2 + 3x$.

 \mathcal{C}_{A} coupe l'axe des abscisses en -3 et 0 et est tournée vers le haut, donc $D(x) = x^2 + 3x$.

77
$$\alpha = \frac{-b}{2a} = \frac{-3}{-0.4} = 7.5$$
; $f(\alpha) = 10.25$

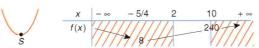
78 $f(x) = \frac{-x^2}{4} + 5x$. Donc $\alpha = 10$ et $\beta = 25$

$$a = \frac{-1}{4} < 0$$



$$h(x) = -0.02x^2 - 0.4x + 20$$
. $x - \infty - 1 + \infty$

79
$$f(x) = 2x^2 + 5x - 10$$
. $\alpha = \frac{-b}{2a} = \frac{-5}{4}$; $a = 2 > 0$



80 1°
$$\alpha = \frac{-b}{2a} = \frac{-7}{2}$$
 et $a = 1 > 0$

$$\begin{array}{c|cccc} q & -\infty & -7/2 & +\infty \\ \hline C(q) & & & & \end{array}$$

Donc sur
$$\, [\, 0 \,\, ; \, 30\,] \subset \left[\, -\, \frac{7}{2} \,\, ; \, + \, \infty \right[\,\, , \,\, \text{la fonction} \,\, \,\, {\it C} \,\, \, \, \, \text{est croissante} \,\,$$

2° a) Chaque hectolitre est vendu $40 \in$, donc R(q) = 40 q

b)
$$B(q) = R(q) - C(q) = -q^2 + 33q - 81$$
 avec $q \in [0; 30]$.

c)
$$a = -1 < 0$$
; $\alpha = \frac{-b}{2a} = 16.5 \in [0; 30]$.

Le maximum est atteint pour 16,5 hectolitres.

8. Fonctions dérivées

81	X	- 4	0	3	6
I	u(x)	0	- 3	- 1	4
	<i>u'</i> (<i>x</i>)	$-\frac{1}{2}$	0	4 3	<u>2</u> 3
	V(X)	5	3	1	0
	<i>v</i> ′(<i>x</i>)	0	- 1	$-\frac{1}{2}$	0

a)
$$f' = u' + v'$$
; $f'(-4) = u'(-4) + v'(-4) = -\frac{1}{2} + 0 = -\frac{1}{2}$;

$$f'(3) = u'(3) + v'(3) = \frac{4}{3} - \frac{1}{2} = \frac{5}{6}$$

$$\begin{split} f'(3) &= u'(3) + v'(3) = \frac{4}{3} - \frac{1}{2} = \frac{5}{6} \ . \\ b) \ g' &= u'v + v'u \ . \quad g'(0) = u'(0) \times v(0) + v'(0) \times u(0) = 0 + (-1) \times (-3) = 3 \ . \end{split}$$

$$g'(3) = u'(3) \times v(3) + v'(3) \times u(3) = \frac{4}{3} \times 1 + \left(-\frac{1}{2}\right) (-1) = \frac{11}{6}$$
.

c) u(-4) = 0 , donc -4 est valeur interdite pour la fonction $h = \frac{1}{u}$, donc aussi pour sa dérivée h' .

$$h' = \frac{-\,u'}{u^2}\;;\;\; h'(3) = \frac{-\,u'(3)}{(\,u(3)\,)^2} = \frac{-\,\frac{4}{3}}{(-\,1)^2} = -\,\frac{4}{3}\;.$$

d)
$$Q = \frac{u}{v}$$
; $Q' : \frac{u'v - v'u}{v^2}$

$$Q(3) = -1$$
; $Q'(3) = \frac{\frac{4}{3} \times 1 - \left(-\frac{1}{2}\right) \times (-1)}{1^2} = \frac{5}{6}$.

$$Q(0) = -1$$
; $Q'(0) = \frac{0 \times 3 - (-1) \times (-3)}{3^2} = -\frac{1}{3}$

$$Q(-4) = 0$$
; $Q'(-4) = \frac{-\frac{1}{2} \times 5 - 0 \times 0}{5^2} = -\frac{1}{10}$

82 a)
$$3x^2 + 3$$
; b) $9x^2 + 2x - 12$; c) $\frac{3}{x^2} + 12$; d) $\frac{-8x}{6} = \frac{-4x}{3}$

82 a)
$$3x^2 + 3$$
; b) $9x^2 + 2x - 12$; c) $\frac{3}{x^2} + 12$; d) $\frac{-8x}{6} = \frac{-4x}{3}$.
83 a) $-x^2 - 6$; b) $\frac{4(x+1)^2 - 1}{(x+1)^2}$; c) $\frac{-1}{(x+2)^2} + \frac{4}{(2-x)^2} = \frac{4(x+2)^2 - (2-x)^2}{(x+2)^2(2-x)^2}$;

d)
$$\frac{-2x+1}{2\sqrt{x}} - 2\sqrt{x} = \frac{-6x+1}{2\sqrt{x}}$$

84 a)
$$\frac{3x^2 - 27}{(x^2 + 9)^2}$$
; b) $\frac{-2x^2 + 2x + 1}{(x^2 - x + 1)^2}$; c) $\frac{-16x}{(x^2 + 4)^2}$; d) $\frac{8x - 12}{(-x^2 + 3x - 5)^2}$

9. Recherche de l'expression d'une fonction

85
$$A\left(0; \frac{-3}{2}\right) \in \mathscr{C}_f \iff f(0) = -\frac{3}{2}$$

Tangente en A de coefficient $\frac{3}{4} \Leftrightarrow f'(0) = \frac{3}{4}$

Tangente horizontale en $-1 \Leftrightarrow f'(-1) = 0$

$$f'(x) = a - \frac{c}{(x+2)^2}$$
 et $f(x) = ax + b + \frac{c}{x+2}$

$$f(0) = -\frac{3}{2} \iff b + \frac{c}{2} = -\frac{3}{2} \iff 2b + c = -3$$

$$f'(0) = \frac{3}{4} \iff a - \frac{c}{4} = \frac{3}{4} \iff 4a - c = 3.$$

$$f'(-1) = 0 \Leftrightarrow a - c = 0$$

 $f'(-1) = 0 \Leftrightarrow a-c=0$. On résout le système a=1; b=-2 et c=1.

D'où
$$f(x) = x - 2 + \frac{1}{x - 2}$$
.

86 Tangente horizontale en $-2 \Leftrightarrow f'(-2) = 0$. $A(0;3) \in \mathscr{C}_f \Leftrightarrow f(0) = 3$.

$$f'(x) = \frac{-ax^2 - 2bx + a}{(x^2 + 1)^2} \ .$$

On résout
$$\begin{cases} \frac{-4a+4b+a}{25} = 0\\ b = 3 \end{cases}$$

D'où
$$a = 4$$
 et $b = 3$: $f(x) = \frac{4x+3}{x^2+1}$ et $f'(x) = \frac{-4x^2-6x+4}{(x^2+1)^2}$.

4. Traitement de données

1. Rapport d'une partie au tout

$$12 = \frac{50}{100} \times \frac{80}{100} \times n \iff n = \frac{12}{0.5 \times 0.8} = 30$$

 $\frac{12}{30}$ = 0,4; 40 % des élèves de TES ont un baladeur MP₃

88 La part des inscrits à l'une au moins des activités dans l'ensemble des adhérents

est de 37,5 % , car
$$\frac{0,1125}{0,30}$$
 = 0,3 . Or 0,375 \times 560 = 210

Sur 210 personnes pratiquant yoga ou musculation, 40 % pratiquent que le yoga, donc 60 % pratiquent la musculation (et peut-être aussi le yoga).

Donc
$$\frac{0.60 \times 210}{560} = 0.225$$
, soit 22,5 % pratiquent la musculation.

89 Part des hommes mariés parmi les hommes : $\frac{17.9}{48.6} \approx 0.3683$; soit 36,83 %.

Part des femmes mariées parmi les femmes : $\frac{26,8}{51,4} \approx 0,5214$; soit 52,14 %

Cela n'a pas de signification d'additionner deux pourcentages ne portant pas sur le même ensemble de référence

90 Pas de signification : ensembles de référence différents