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TSI 1

Ce devoir est à faire en binôme en rédigeant une copie par personne.

Exercice 1 Dénombrement

La justification des réponses occupe une grande part dans la notation de cet exercice.

1. n désigne un entier naturel non nul. Déterminer le cardinal des ensembles suivants :

E1 =
{

(i ; j ) ∈ [[1; n]]2/ i 6= j
}

E2 =
{

(i ; j ) ∈ [[1; n]]2/ i < j
}

E3 =
{

(i ; j ) ∈Z
2/ |i | ≤ n et

∣

∣ j
∣

∣≤ n
}

E4 =
{

(i ; j ) ∈Z
2/ |i | =

∣

∣ j
∣

∣ et |i | ≤ n
}

Solution: Pour E1 :

Il y a n manières de choisir i et n−1 manières de choisir j donc #E1 = n(n−1).

Pour E2 :

Parmi les couples de E1, il y a autant de couples où i < j que de couples où i > j donc #E2 = #E1
2 = n(n−1)

2 .

Pour E3 :

E4 = [[−n; n]]× [[−n; n]] donc #E5 = (2n+1)2.

Pour E4 :

On sait que i ∈ [[−n; n]]. Pour tout i non nul de cet ensemble, il y a deux manières de choisir j et pour
i = 0, il n’y a qu’une manière de choisir j donc #E6 = 4n+1.

On pouvait aussi résoudre cet exercice en représentant les ensembles de
points dans un plan avec un axe pour i et l’autre axe pour j .

Par exemple, les points de E4 forment alors une croix avec quatre branches de car-
dinal n et le centre.

2. Sur ses trois premiers devoirs, notés sur vingt, et tous pondérés de manière identique, un étudiant a exacte-
ment dix de moyenne.

Combien de notations différentes peuvent conduire à ce résultat ?

On donnera le résultat exact en supposant que les notes sont des entiers compris entre zéro et vingt.

Solution: Notons (i , j , k) ∈ [[0; 20]]3 les trois notes. On sait que i + j +k = 30 car la moyenne est de 10.

Raisonnons sur la première note i :
• Pour i = 0, j peut prendre toutes les valeurs entre 10 et 20 donc il y a 11 possibilités pour j et k ;
• et ainsi de suite jusqu’à i = 10 où j peut prendre 21 valeurs différentes ;
• à partir de i = 11, le nombre de valeurs que peut prendre j décroît.



On a donc en tout 11+12+·· ·+20+21+20+·· ·+11 = 21+2×
20
∑

k=11
k = 21+2×10×

(

20+11

2

)

= 21+10×31 =

331 possibilités.

3. Au sein de cette classe qui compte trente-deux étudiants, de combien de manières peut-on créer dix groupes
de colles numérotés de un à dix comportant trois étudiants et un groupe de colles numéro onze comportant
deux étudiants ?

On répondra avec une formule la plus simple possible.

Solution: Pour constituer le groupe no 1, on a
(32

3

)

possibilités.

Une fois constitué le groupe no 1, on constitue le groupe no 2, ce qui laisse
(29

3

)

possibilités.

Et ainsi de suite jusqu’à la constitution de groupe no 11 qui consiste à choisir deux étudiants parmi les
deux restants :

(2
2

)

possibilités.

Finalement, le nombre de possibilités est :

(

32

3

)

×
(

29

3

)

×·· ·×
(

5

3

)

×
(

2

2

)

=
32×31×30

3!
×

29×28×27

3!
×·· ·×

5×4×3

3!
×

2×1

2!
=

32!

2×610

Exercice 2 Géométrie de l’espace, plan complexe

Les questions sont à peu près indépendantes. Sauf indication contraire, dans toute la suite, l’espace est muni d’un

repère orthonormé
(

O;~ı; ~ ; ~k
)

.

1. Distance entre un point et un plan. Soient (a; b; c; d) ∈ R
4 des nombres tels que (a; b; c) 6= (0; 0; 0) et soit

P le plan d’équation :
ax +by +cz = d

Enfin, A





xa

ya

za



 désigne un point et A′ désigne le projeté orthogonal de A dans le plan P .

(a) Déterminer une équation paramétrique de la droite orthogonale à P qui contient A, en fonction de
(a; b; c; xa ; ya ; za ).

Solution: Cette droite a pour vecteur directeur un vecteur normal du plan~n





a

b

c



. Elle a donc pour

équation paramétrique :










x = xa + t a

y = ya + tb

z = za + tc

t ∈R

2



(b) En déduire les coordonnées de A′, en fonction de (a; b; c; d ; xa ; ya ; za), puis celles du vecteur
−−→
AA′ et

enfin la distance A A′.

Solution: A′ est sur la droite dont on a établi l’équation à la question précédente. Il est aussi dans

le plan. Ses coordonnées





x

y

z



 vérifient donc le système :























x = xa + t a

y = ya + tb

z = za + tc

ax +by +cz = d

On trouve t en substituant x, y et z dans la dernière équation :

a(xa + t a)+b(ya + tb)+c(za + tc) = d ⇐⇒ t(a2 +b2 +c2) = d −axa −bya −cza

⇐⇒ t =
d − (axa +bya +cza )

a2 +b2 +c2
car a2 +b2 +c2 > 0 (nombres non tous nuls)

Ainsi :

A′





xa + t a

ya + tb

za + tc



 avec t =
d − (axa +bya +cza )

a2 +b2 +c2

On en déduit
−−→
AA′ =





t a

tb

tc



 avec t =
d − (axa +bya +cza )

a2 +b2 +c2
. Et ainsi :

A A′ = |t |
√

a2 +b2 +c2 =
∣

∣d − (axa +bya +cza )
∣

∣

a2 +b2 +c2

√

a2 +b2 +c2 =
∣

∣d − (axa +bya +cza )
∣

∣

p
a2 +b2 +c2

C’est la distance entre A et le plan.

2. Sphère tangente. Soit S la sphère de centre O et de rayon 1. m est un nombre et Pm est le plan d’équation

x + y + z = m

Déterminer les éventuelles valeurs de m pour lesquelles S et Pm sont tangents.

Solution: Le plan est tangent à la sphère lorsque la distance entre le plan et le centre de la sphère vaut
le rayon de la sphère.

On applique la formule établie à la question précédente avec a = b = c = 1 et xa = ya = za = 0 et d = m.
La distance entre Pm et le centre de la sphère est donc |m|p

3
et cette distance est égale au rayon lorsque

|m| =
p

3, c’est à dire pour m =
p

3 ou m =−
p

3.

3. Lieux. On se place dans le plan complexe. Soient A et B deux points distincts d’affixes respectives za et zb .

Quels lieux forment les images des ensembles suivants :

Ea = {(1−λ)za +λzb , λ ∈R} Eb =
{

za +2eiθ , θ ∈ [0; π[
}

Ec =
{

z ∈C/ (z − za)
(

z − zb

)

= 0
}
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Solution: Soit z un complexe quelconque dont l’image dans le plan complexe est M .

Examinons Ea :

On a les équivalences :

z ∈Ea ⇐⇒ ∃λ/ z = (1−λ)za +λzb ⇐⇒ ∃λ/ z − za =λ(zb − za)

⇐⇒ ∃λ/
−−→
AM =λ

−→
AB

⇐⇒ M ∈ (AB)

Ea forme donc la droite (AB).

Examinons Eb :

Par équivalences :

z ∈ Eb ⇐⇒ ∃θ ∈ [0; π[/ z = za +2eiθ ⇐⇒ ∃θ ∈ [0; π[/ z − za = 2eiθ

⇐⇒ ∃θ ∈ [0; π[/ |z − za | = 2 et arg(z − za) = θ

En notant
(

O; ~e; ~f
)

le repère du plan complexe, cette dernière condition s’écrit :

AM = 2 et
(

~e;
−−→
AM

)

∈ [0; π[

Eb forme donc un demi-cercle de centre A et de rayon 2.

Examinons Ec :

On a :
z ∈ Ec ⇐⇒ (z − za)(z − zb) = 0 ⇐⇒ z = za ou z = zb

Le lieu Ec est donc limité aux points A et B .

Exercice 3 Trigonométrie hyperbolique

Soient les fonctions cosh : x 7→
ex +e−x

2
, sinh : x 7→

ex −e−x

2
et tanh : x 7→

sinh(x)

cosh(x)

Partie A : quelques propriétés des fonctions hyperboliques

1. Étude de cosh et sinh.

(a) Préciser les domaines de définition et de dérivabilité de ces deux fonctions, étudier leurs parités.

Solution: Ces fonctions sont toutes les deux définies et dérivables sur R car exponentielle est dé-
finie et dérivable sur R.

On remarque également que pour tout x, cosh(−x) =
e−x +e−(−x)

2
=

ex +e−x

2
= cosh(x) et

sinh(−x) =
e−x −e−(−x)

2
=−

ex −e−x

2
=−sinh(x). Ainsi, cosh est paire et sinh est impaire.

(b) Étudier les signes de sinh et de cosh.
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Solution: On résout sinh(x) > 0 pour déterminer le signe de sinh. Ainsi, pour tout x :

sinh(x) > 0 ⇐⇒ ex −e−x > 0 ⇐⇒ ex −
1

ex
> 0 ⇐⇒

e2x −1

ex
> 0

Or e2x −1 > 0 ⇐⇒ 2x > 0 ⇐⇒ x > 0. Ainsi sinh(x) est positive sur R+ et négative sur R−.

Concernant cosh, il est positif car, pour tout x, ex +e−x > 0.

(c) Calculer les dérivées de ces deux fonctions, puis en déduire les tableaux de variations, avec les limites.

Solution: On a pour tout x, cosh′(x) =
ex −e−x

2
= sinh(x) et sinh′(x) =

ex − (−e−x )

2
= cosh(x).

On en déduit, à partir des signes de sinh et cosh, que sinh est strictement croissante, et que cosh est
décroissante sur R− et croissante sur R+.

De plus, cosh(0) = 1 et sinh(0) = 0.

Restent à déterminer les limites en +∞ (les limites en −∞ se déduisent par parité).

lim
x→+∞

ex =+∞ et lim
x→+∞

e−x = 0 donc lim
+∞

sinh =+∞ et lim
+∞

cosh =+∞.

Finalement, on peut tracer les tableaux de variations.

x

cosh′(x) = sinh(x)

cosh(x)

−∞ 0 +∞

− 0 +

+∞+∞

11

+∞+∞

x

sinh′(x) = cosh(x)

sinh(x)

−∞ +∞

+

−∞−∞

+∞+∞

0

0

2. a et b désignent deux nombres. Prouver les égalités suivantes :

(a)
cosh2(a)− sinh2(a) = 1

Solution: Cela s’obtient par le calcul.

En effet, pour tout a, cosh2(a) =
e2a +e−2a +2ea e−a

4
=

e2a +e−2a +2

4
et sinh2(a) =

e2a +e−2a −2

4

Ainsi, on obtient bien pour tout a, cosh2(a)− sinh2(a)=
2− (−2)

4
= 1
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(b)
cosh(a +b) = cosh(a)cosh(b)+ sinh(a)sinh(b)

Solution: On calcule le second membre de l’égalité. Pour tout (a; b) :

cosh(a)cosh(b)+ sinh(a)sinh(b)=
ea+b +e−(a+b) +ea−b +eb−a

4
+

ea+b +e−(a+b) −ea−b −eb−a

4

=
2ea+b +2e−(a+b)

4
=

ea+b +e−(a+b)

2
= cosh(a +b)

(c)
sinh(a +b)= sinh(a)cosh(b)+cosh(a)sinh(b)

Solution: Cela s’obtient par le même genre de calcul que précédemment. En effet, pour tout (a; b) :

sinh(a)cosh(b)+cosh(a)sinh(b)=
ea+b −e−(a+b) +ea−b −eb−a

4
+

ea+b −e−(a+b) −ea−b +eb−a

4

=
2ea+b −2e−(a+b)

4
=

ea+b −e−(a+b)

2
= sinh(a +b)

3. En exploitant la parité des fonctions, les trois formules établies précédemment, et en s’inspirant des formules
de trigonométrie classique, déterminer :

(a) les formes développées de cosh(a −b) et sinh(a −b) ;

Solution: On obtient les formules en remarquant que, pour tout (a; b), cosh(a−b)= cosh (a + (−b))
et sinh(a −b) = sinh (a + (−b)). Ainsi :

cosh(a −b) = cosh(a)cosh(−b)+ sinh(a)sinh(−b)= cosh(a)cosh(b)− sinh(a)sinh(b)

et
sinh(a −b) = sinh(a)cosh(−b)+cosh(a)sinh(−b)= sinh(a)cosh(b)−cosh(a)sinh(b)

En effet, cosh est paire et sinh est impaire.

(b) les formules de duplication donnant cosh2(a) et sinh2(a) en fonction de cosh(2a).

Solution: On a, pour tout a :

cosh(2a) = cosh(a +a)= cosh2(a)+ sinh2(a)

Or, cosh2(a)− sinh2(a) = 1, c’est à dire sinh2(a) = cosh2(a)−1 et cosh2(a) = 1+ sinh2(a). Ainsi :

cosh(2a) = cosh2(a)+ sinh2(a)= 2cosh2(a)−1 = 2sinh2(a)+1

On en déduit les deux formules de duplication :

sinh2(a)=
cosh(2a)−1

2
cosh2(a) =

cosh(2a)+1

2
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4. Étudier complètement la fonction tanh : domaine de définition, dérivabilité, dérivée, parité, tableau de va-
riations (avec les valeurs remarquables et les limites aux bornes).

Solution: Dans l’expression
sinh(x)

cosh(x)
, le dénominateur ne s’annule jamais. Ainsi, tanh est également

définie et dérivable sur R.

On a vu que sinh est impaire, cosh sont paire et donc, pour tout x

tanh(−x) =
sinh(−x)

cosh(−x)
=−

sinh(x)

cosh(x)
=− tanh(x)

Ainsi, tanh est impaire.

On a, en exploitant ce qui précède, pour tout x :

tanh′(x) =
cosh(x)cosh(x)− sinh(x)sinh(x)

cosh2(x)
=

cosh2(x)− sinh2(x)

cosh2(x)
=

1

cosh2(x)

Sa dérivée étant strictement positive, tanh est strictement croissante

La limite de tanh en +∞ est a priori indéterminée. On utilise les techniques de levée d’indétermination.
Ainsi, pour tout x :

tanh(x) =
ex−e−x

2
ex+e−x

2

=
ex

(

1−e−2x
)

ex
(

1+e−2x
) =

1−e−2x

1+e−2x

On en déduit, par quotient de limites que lim
+∞

tanh = 1.

Finalement, on peut dresser le tableau de variations de tanh :

x

tanh′(x) =
1

cosh2(x)

tanh(x)

−∞ +∞

+

−1−1

11

0

0

Partie B : les fonctions hyperboliques réciproques

1. (a) Soit β ∈R. Résoudre l’équation :
sinh(x) =β

Indication: On pourra faire le changement de variable X = ex

Solution: On pose X = ex . Notons que X > 0.

Résoudre sinh(x) =β donne l’équation équivalente suivante sur X :

X − 1
X

2
=β ⇐⇒ X −

1

X
= 2β ⇐⇒ X 2 −2βX −1 = 0

7



En théorie, après calcul, on obtient deux solutions pour X :

{

X1 =β+
√

β2 +1

X2 =β−
√

β2 +1
sachant que ∆=

√

4β2 +4> 0

Mais, il est clair que l’on doit écarter la seconde racine car elle est négative.

On obtient donc finalement x = ln(X1) = ln
(

β+
√

β2 +1
)

(b) Pour tout α ∈ [1; +∞[, déterminer l’unique solution positive de l’équation

cosh(x) =α

Solution: On résout pour α≥ 1, l’équation cosh(x) =α

Avec des calculs similaires, on obtient, en posant X = ex , l’équation équivalente sur X .

X 2 −2αX +1 = 0

Cette équation possède deux racines :

{

X1 =α+
p
α2 −1

X2 =α−
p
α2 −1

sachant que ∆=
√

4α2 −4≥ 0 car α≥ 1

Pour tout α≥ 1, on a X1 =α+
p
α2 −1 ≥ 1 et donc ln (X1) ≥ 0.

En revanche, on a, par la technique du conjugué :

X2 =α+
√

α2 −1 =

(

α−
p
α2 −1

)(

α+
p
α2 −1

)

α+
p
α2 −1

=
1

α+
p
α2 −1

=
1

X1
≤ 1

Pour α> 1, cela donne donc ln(X2) < 0. Finalement, seul ln(X1) convient.

On obtient ainsi l’unique solution positive x = ln
(

x +
p

x2 −1
)

2. Les deux questions précédentes nous montrent que sinh est bijective de R vers R et que cosh est bijective de
R
+ vers [1; +∞[. On note arcsinh et arccosh leurs deux fonctions réciproques.

(a) Déterminer les expressions simplifiées de sinh(arccosh(x)) et cosh(arcsinh(x)). On précisera le domaine

de validité de ces expressions.

Solution: Cette expression existe pour x ∈ [1; +∞[ et pour tout x de ce domaine, arccosh(x) est
positif et donc sinh(arccosh(x)) est également positif.

Posons u = arccosh(x). On a donc cosh(u) = x. Or cosh2(u) − sinh2(u) = 1 et ainsi sinh2(u) =
cosh2(u)−1. Cette dernière expression est positive car cosh prend ses valeurs dans [1; +∞[.

On en déduit que sinh(u) = sinh(arccosh(x)) =
√

cosh2(u)−1 =
p

x2 −1

Par un raisonnement similaire, on obtient cosh(arcsinh(x)) =
p

x2 +1

(b) En déduire les dérivées de arccosh et arcsinh. On précisera les domaines de dérivabilité de ces fonctions.
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Solution: On utilise la formule de dérivation d’une fonction réciproque. Sachant que la dérivée de
cosh s’annule en 0, arccosh est dérivable sur ]1; +∞[. La formule de dérivation donne, pour tout x

de ce domaine :

arccosh′(x) =
1

cosh′ (arccosh(x))
=

1
p

x2 −1

De même, on en déduit que arcsinh est dérivable sur R car la dérivée de sinh ne s’annule jamais.
De plus, pour tout réel x :

arcsinh′(x) =
1

sinh′ (arcsinh(x))
=

1
p

x2 +1
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