TS1 2016/2017

Correction de la fin du polycopié « Suites définies implicitement : aspects graphiques (I) »

B 3)a) Soit
$$n \in \mathbb{N}$$
; on a $s_{n+1} = v_{n+1} - 2 = \frac{3v_n}{1 + v_n} - \frac{2(1 + v_n)}{1 + v_n} = \frac{3v_n - 2 - 2v_n}{1 + v_n}$, soit $s_{n+1} = \frac{v_n - 2}{1 + v_n} = \frac{s_n}{1 + v_n}$.

Or, d'après B.2.a., on a $v_n \ge 2$ donc $1 + v_n \ge 3$, d'où $\frac{1}{1 + v_n} \le \frac{1}{3}$ par décroissance de $x \mapsto \frac{1}{x}$ sur $]0; +\infty[$. Comme $v_n \ge 2$, on a $s_n = v_n - 2 \ge 0$, donc $\frac{s_n}{1 + v_n} \le \frac{1}{3}s_n$, soit $s_{n+1} \le \frac{1}{3}s_n$.

B 3)b) Notons, pour $n \in \mathbb{N}$, $\mathcal{P}(n)$ la proposition : $s_n \leqslant \frac{1}{3^{n-1}}$.

- Initialisation : on a $s_0 = v_0 2 = 5 2 = 3$ et $\frac{1}{3^{0-1}} = \frac{1}{3^{-1}} = 3$, donc $s_0 \leqslant \frac{1}{3^{0-1}}$, ce qui prouve que $\mathcal{P}(0)$ est vraie.
- **Hérédité**: supposons que $\mathcal{P}(n)$ soit vraie à un certain rang $n \in \mathbb{N}$. On a $s_n \leqslant \frac{1}{3^{n-1}}$ donc $\frac{1}{3} \times s_n \leqslant \frac{1}{3} \times \frac{1}{3^{n-1}}$ (car $\frac{1}{3} > 0$), d'où $\frac{1}{3} s_n \leqslant \frac{1}{3^{1+n-1}} = \frac{1}{3^n}$. Or d'après la question précédente, on a $s_{n+1} \leqslant \frac{1}{3} s_n$, par conséquent $s_{n+1} \leqslant \frac{1}{3^n}$, soit $s_{n+1} \leqslant \frac{1}{3^{(1+n)-1}}$, ce qui établit que $\mathcal{P}(n+1)$ est vraie.
- On a donc prouvé par récurrence que pour tout $n \in \mathbb{N}$, $s_n \leqslant \frac{1}{3^{n-1}}$.

B 3)c) • D'après B.2.a., on sait que $v_n \in]2; +\infty[$, donc $2 \leq v_n$.

- D'après B.3.b., on a $s_n \leqslant \frac{1}{3^{n-1}}$, soit $v_n 2 \leqslant \frac{1}{3^{n-1}}$ et finalement $v_n \leqslant 2 + \frac{1}{3^{n-1}}$.
- Bilan: pour tout $n \in \mathbb{N}$, on a $2 \leqslant v_n \leqslant 2 + \frac{1}{3^{n-1}}$, soit $2 \leqslant v_n \leqslant 2 + 3 \times \frac{1}{3^n}$. Or $\lim_{n \to +\infty} 2 = 2$ et comme $\frac{1}{3} \in]-1;1[$, on a par produit et somme : $\lim_{n \to +\infty} \left(2 + 3 \times \frac{1}{3^n}\right) = 2 + 3 \times 0 = 2$. Le théorème « des gendarmes » entraı̂ne alors que (v_n) converge vers 2.