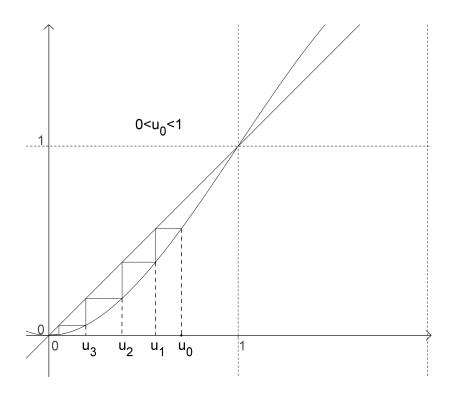
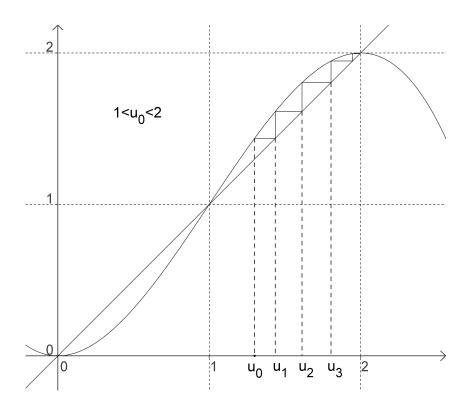
Correction du devoir de Mathématiques n°2

III 1) • Lorsque $0 < u_0 < 1$, la suite (u_n) semble décroissante et converger vers 0:



 \bullet Lorsque $1 < u_0 < 2,$ la suite (u_n) semble croissante et converger vers 2 :



 \bullet Si $u_0=0$ (resp. $u_0=1$; resp $u_0=2$), la suite semble constante égale à 0 (resp. 1; 2).

- **2)a)** Notons pour $n \in \mathbb{N}$, $\mathscr{P}(n)$ la proposition : $u_n \in [0; 1]$.
- Initialisation : On a $u_0 = 0, 5 \in [0; 1]$ donc $\mathcal{P}(0)$ est vraie.
- **Hérédité**: Supposons que $\mathscr{P}(n)$ soit vraie pour un certain $n \in \mathbb{N}$; on a donc $0 \le u_n \le 1$. Or on sait d'après 1) que f est croissante sur [0;2]; on peut donc en déduire que : $f(0) \le f(u_n) \le f(1)$. Comme f(0) = 0, $f(1) = -\frac{1}{2} + \frac{3}{2} = 1$ et $u_{n+1} = f(u_n)$, cela implique que $0 \le u_{n+1} \le 1$ et $\mathscr{P}(n+1)$ est donc vraie.
- On a donc prouvé par récurrence que $\mathscr{P}(n)$ était vraie pour tout $n \in \mathbb{N}$.
- **2)b)** Notons pour $n \in \mathbb{N}$, $\mathcal{R}(n)$ la proposition : $u_{n+1} \leq u_n$.
- Initialisation : On a $u_1 = -\frac{1}{2}u_0^3 + \frac{3}{2}u_0^2 = -\frac{1}{2} \times 0, 5^3 + \frac{3}{2} \times 0, 5^2 = 0,3125.$ Ainsi $u_1 \le u_0$, ce qui établit que $\mathcal{R}(0)$ est vraie.
- **Hérédité**: Supposons que $\mathcal{R}(n)$ soit vraie pour un certain $n \in \mathbb{N}$; on a donc $u_{n+1} \leq u_n$. Or d'après 3)a), on sait que u_n et u_{n+1} sont dans [0; 1]. On peut donc appliquer la croissance de la fonction f sur [0; 1] (on sait d'après 1) que f est croissante sur [0; 2]) et déduire que $f(u_{n+1}) \leq f(u_n)$, ce qui prouve que $u_{n+2} \leq u_{n+1} : \mathcal{R}(n+1)$ est donc vraie.
- On a donc montré par récurrence que $\mathcal{R}(n)$ était vraie pour tout $n \in \mathbb{N}$: la suite (u_n) est donc décroissante.
- **2)c)** La suite (u_n) étant décroissante, on a pour tout $n \in \mathbb{N}$: $u_n \leqslant u_0 = \frac{1}{2}$. Comme $u_n \geqslant 0$, on en déduit que $u_n \times \frac{1}{2}u_n \leqslant \frac{1}{2} \times \frac{1}{2}u_n$, d'où : $0 \leqslant \frac{1}{2}u_n^2 \leqslant \frac{1}{4}u_n$ (1). D'autre part $0 \leqslant u_n \leqslant 1$ donc $-1 \leqslant -u_n \leqslant 0$ puis $0 < 2 \leqslant 3 u_n \leqslant 3$ (2). Comme elles mettent en jeu des termes positifs, on peut faire le produit membre à membre des inégalités (1) et (2) : $\frac{1}{2}u_n^2 \times (3 u_n) \leqslant \frac{1}{4}u_n \times 3$, soit : $u_{n+1} = \frac{1}{2}u_n^2(3 u_n) \leqslant \frac{3}{4}u_n$.
- **2)d)** Soit $n \in \mathbb{N}$. On a déjà vu au 3)a) que $0 \leq u_n$. Notons $\mathscr{B}(n)$ la proposition $u_n \leq \left(\frac{3}{4}\right)^n$.
- Initialisation : On a $u_0 = \frac{1}{2}$ et $\left(\frac{3}{4}\right)^0 = 1$ donc $u_0 \leqslant \left(\frac{3}{4}\right)^0 : \mathcal{B}(0)$ est vraie.
- **Hérédité**: Supposons que $\mathscr{B}(n)$ soit vraie pour un certain $n \in \mathbb{N}$; on a donc $u_n \leqslant \left(\frac{3}{4}\right)^n$. Comme $\frac{3}{4} > 0$, on en déduit que $\frac{3}{4} \times u_n \leqslant \frac{3}{4} \times \left(\frac{3}{4}\right)^n$, soit $\frac{3}{4}u_n \leqslant \left(\frac{3}{4}\right)^{n+1}$. Or d'après 3)c), on a $u_{n+1} \leqslant \frac{3}{4}u_n$, ce qui prouve que $u_{n+1} \leqslant \left(\frac{3}{4}\right)^{n+1}$ et donc que $\mathscr{B}(n+1)$ est vraie.
- On a ainsi montré par récurrence que $\mathcal{B}(n)$ était vraie pour tout $n \in \mathbb{N}$. On a donc, pour tout $n \in \mathbb{N}$: $0 \le u_n \le \left(\frac{3}{4}\right)^n$.
- **2)e)** Comme $\frac{3}{4} \in]-1;1[$, on a $\lim_{n\to +\infty} \left(\frac{3}{4}\right)^n = 0$. L'inégalité obtenue à la question précédente permet donc ce conclure, en vertu du théorème des gendarmes, que (u_n) converge vers 0. Cela confirme bien la conjecture faite graphiquement à la question 2) dans le cas où $0 < u_0 < 1$.

- $\boxed{\mathbf{I}}$ a) L'algorithme commence par demander à l'utilisateur une valeur pour le réel u [qui constituera le terme initial u_0 d'une suite (u_n)] puis une valeur pour l'entier n.
- Commence alors une boucle (POUR k ALLANT DE 1 À n) qui sera parcourue n fois (k joue simplement le rôle d'un compteur : il prend successivement les valeurs $1; 2; \dots; n$). À chaque fois, la valeur de u précédente est remplacée par $\frac{3u}{1+u}$. Au sortir de la boucle, l'algorithme affiche la dernière valeur de u.
- \hookrightarrow L'algorithme calcule et affiche le terme de rang n (choisi par l'utilisateur) de la suite de terme initial u_0 (choisi par l'utilisateur : c'est la première valeur stockée dans u) et définie par la relation de récurrence $u_{n+1} = \frac{3u_n}{1+u_n}$.
- b) L'algorithme calcule les termes successifs de la suite u définie par $u_0 = 0, 3$ et la relation de récurrence $u_{n+1} = \sqrt{u_n}$ en incrémentant un compteur N après chaque calcul, ceci tant que le terme de la suite u est strictement inférieur à 0,999999 (structure TANT QUE). L'entier N joue donc le rôle d'un compteur qui indique combien de fois a été parcourue la boucle TANT QUE. Lorsqu'on sort de la boucle, la valeur stockée dans N est affichée.
- \hookrightarrow L'algorithme fournit donc la valeur du plus petit entier naturel N tel que $u_N \geqslant 0,99999$.
- c) L'algorithme commence par stocker la valeur 0 dans la variable S puis demande à l'utilisateur une valeur à stocker dans la variable N.
- Commence alors une boucle dans laquelle l'entier k prend successivement les valeurs $1; 2; \cdots; N$. À chaque passage dans la boucle, on ajoute $\frac{1}{k^2}$ à la dernière valeur stockée dans S. Au sortir de la boucle, l'algorithme affiche la valeur finalement stockée dans S.
- \hookrightarrow L'algorithme calcule $0 + \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{N^2}$ (c'est-à-dire $\sum_{k=1}^{N} \frac{1}{k^2}$), où N est la valeur entrée par l'utilisateur au départ.

 \mathbf{II}

