Devoir de Pâques

• Exercice I

- 1) Prouver que $g: x \mapsto e^x[\cos(2x) + 2\sin(2x)]$ est dérivable sur $\mathbb R$ et calculer sa dérivée.
- 2) Calculer $\int_0^{\pi} e^x \cos(2x) dx$.
- 3) Soit $I = \int_0^{\pi} e^x \cos^2 x \, dx$ et $J = \int_0^{\pi} e^x \sin^2 x \, dx$. Calculer I + J et I J pour en déduire les valeurs de I et J.

• Exercice II

Le but de cet exercice est de déterminer une valeur approchée à 10^{-2} près de l'intégrale :

$$I = \int_0^1 \left(\frac{e^{-x}}{2-x}\right) dx$$

- **1. a.** Dresser le tableau des variations de la fonction $f: x \longmapsto \frac{e^{-x}}{2-x}$ sur $\mathbb{R}\setminus\{2\}$.
 - **b.** Montrer que, pour tout réel x de l'intervalle $[0\ ;\ 1],$ on a : $\frac{1}{e}\leqslant f(x)\leqslant \frac{1}{2}$.
- **2.** Soit J et K les intégrales définies par : $J = \int_0^1 (2+x) e^{-x} dx$ et $K = \int_0^1 x^2 f(x) dx$.
 - **a.** Trouver deux réels a et b tels que la fonction $H: x \longmapsto (ax+b)e^{-x}$ soit une primitive de la fonction $h: x \longmapsto (x+2)e^{-x}$ sur \mathbb{R} . En déduire que $J=3-\frac{4}{\mathrm{e}}$.
 - **b.** Utiliser la question 1.b. pour démontrer que : $\frac{1}{3e} \leqslant K \leqslant \frac{1}{6}$.
 - c. Démontrer que J + K = 4I.
 - **d.** Déduire de tout ce qui précède un encadrement de I, puis donner une valeur approchée à 10^{-2} près de I.