Exercice (d'après Bac S, Inde, avril 2012)

Partie A: Restitution organisée de connaissances

Soit z un nombre complexe. On rappelle que \overline{z} est le conjugué de z et que |z| est le module de z. On admet l'égalité : $|z|^2 = z\overline{z}$.

Montrer que, si z_1 et z_2 sont deux nombres complexes, alors $|z_1z_2| = |z_1| |z_2|$.

Partie B: Étude d'une transformation particulière

Dans le plan complexe rapporté au repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on désigne par A et B les points d'affixes respectives 1 et -1.

Soit f la transformation du plan qui à tout point M d'affixe $z \neq 1$, associe le point M' d'affixe z' tel que : $z' = \frac{1-z}{\overline{z}-1}$.

- 1. Soit C le point d'affixe $z_{\rm C}=-2+{\rm i}.$
 - (a) Calculer l'affixe $z_{C'}$ du point C' image de C par la transformation f, et placer les points C et C' dans le repère ci-dessous.
 - (b) Montrer que le point C' appartient au cercle $\mathscr C$ de centre O et de rayon 1.
 - (c) Montrer que les points A, C et C' sont alignés.
- 2. Déterminer et représenter sur la figure ci-dessous l'ensemble Δ des points du plan qui ont le point A pour image par la transformation f.
- 3. Montrer que, pour tout point M distinct de A, le point M' appartient au cercle \mathscr{C} .
- 4. Montrer que, pour tout nombre complexe $z \neq 1$, $\frac{z'-1}{z-1}$ est réel. Que peut-on en déduire pour les points A, M et M'?
- 5. On a placé un point D sur la figure ci-dessous. Construire son image D' par la transformation f.

