Correction du contrôle de MATHÉMATIQUES nº 4

(I) 1) Borows $u(x) = \sqrt{x}$ et $v(x) = \frac{x^3+1}{x+3}$; si x < 0, on a $v(x) = \frac{x^2+\frac{1}{x}}{1+3x\frac{1}{x}}$ done lim $v(x) = +\infty$ (par produit, somme et quotient); d'autre part lim $\sqrt{x} = +\infty$ done par composition dim $u[v(x)] = +\infty$, soit clim $\sqrt{\frac{x^3+1}{x+1}} = +\infty$.

2)a) Sour tout x>0, on a $\sqrt{9x^2+7} - 3x = \frac{(\sqrt{9x^2+7} - 3x)(\sqrt{9x^2+7} + 3x)}{\sqrt{9x^2+7} + 3x} = \frac{\sqrt{9x^2+7}^2 - (3x)^2}{\sqrt{9x^2+7} + 3x}$, d'où $\sqrt{9x^2+7} - 3x = \frac{9x^2+7 - 9x^2}{\sqrt{9x^2+7} + 3x} = \frac{7}{\sqrt{9x^2+7} + 3x}$. Given $\sqrt{9x^2+7} > 0$ donc $\sqrt{9x^2+7} + 3x > 3x$.

or $\lim_{x\to+\infty} (3x) = +\infty$, d'où par comparaison: $\lim_{x\to+\infty} (\sqrt{9x^2+7} + 3x) = +\infty$ et finalement

for quotient lim $(\sqrt{3x^2+7}-3x)=0$.

2)6) Six>0, on a $\sqrt{9x^2+x} - 3x = \frac{\sqrt{9x^2+x^2} - (3x)^2}{\sqrt{9x^2+x} + 3x} = \frac{9x^2+x - 9x^2}{\sqrt{9x^2+x} + 3x} = \frac{x}{\sqrt{9x^2+x} + 3x}$

Soit $\sqrt{9x^2+x}$ $-3x = \frac{x}{\sqrt{x^2(9+\frac{1}{x})}+3x} = \frac{x}{\sqrt{3+\frac{1}{x}}+x} = \frac{1}{\sqrt{9+\frac{1}{x}}+3}$

So sons $u(x) = \sqrt{x}$ et $v(x) = 3 + \frac{1}{x}$; on a par somme clim v(x) = 3 et lim $\sqrt{x} = \sqrt{9} = 3$ (car $x \mapsto \sqrt{x}$ est continue sur v(x) = 3 donc par composition lim v(x) = 3, ce qui v(x) = 3, ce qui

montre, par somme et quotient, que lin $\left[\sqrt{9x^2+x} - 3x\right] = \frac{1}{3+3} = \frac{1}{6}$.

3) da fonction $f: x \mapsto (3x-2)^{10}$ est dérivable sur \mathbb{R} de derivée $f: x \mapsto 10 \times 3 \times (3x-2)^{9}$; en farticulier $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 10 \times 3 \times (3-2)^{9} = 30$, c'est-à-dire:

 $\lim_{x\to 1} \frac{(3x-2)^{10}-1}{x-1} = 30 \quad (\text{moter que } f(1) = (3-2)^{10} = 1^{10} = 1).$

n'est défini que lorsque 22 + 1, c'est-à-dire si x 4 {-1; 1}. L'ensemble de définition de f est donc $S = \mathbb{R} \setminus S - 1$, 1} 2) . On a $f(x) = \frac{x^2 - 4x + 4}{x^2 - 1} = \frac{x^2 \left(1 - \frac{4}{x} + \frac{4}{x^2}\right)}{x^2 \left(1 - \frac{1}{x^2}\right)} = \frac{1 - \frac{4}{x} + \frac{4}{x^2}}{1 - \frac{1}{x^2}}$ (lorsque $x \neq 0$) Sar somme, on a lim $\left(1-\frac{4}{x}+\frac{4}{x^2}\right)=1-0+0=1$ et lim $\left(1-\frac{1}{x^2}\right)=1-0=1$. De même: $\lim_{x \to +\infty} \left(1 - \frac{4}{x} + \frac{4}{x^2}\right) = 1 - 0 + 0 = 1$ et $\lim_{x \to +\infty} \left(1 - \frac{1}{x^2}\right) = 1 - 0 = 1$. On deduit par quotient que dim $f(x) = \frac{1}{1} = 1$ et lim $f(x) = \frac{1}{1} = 1$. Sa droite d'équation y=1 est donc asymptote à €g en-∞ et + ∞. $(2n a \propto -1 = (2c-1)(2c+1)$, d'où: - (an a lim $(x-2)^2 = (-1-2)^2 = 9$. D'antre part (voir tableau de signes) lim $(x^2-1)=0^+$ et lim $(x^2-1)=0^$ d'où far quotient, lim $f(x) = +\infty$ et lim $f(x) = -\infty$ $x \to -1$ $x \to -1$ On a lim $(x-a)^2 = (1-2)^2 = 1$. D'antre part (voir tableau de signes) lim $(x^2-1)=0^-$ et lim $(x^2-1)=0^+$ $x\to 1$ $x\to 1$ d'où par quotient, lim $f(\infty) = -\infty$ et lim $f(x) = +\infty$ x < 1 x > 1C> Les droites d'équations x = -1 et x = 1 sont donc asymptotes à G_g . 3) Si $x \in \mathcal{D}$, $f(x) = \frac{u(x)}{v(x)}$ avec $u(x) = w(x)^2$, on w(x) = x - 2 et $\varphi(x) = 3c^2 - 1$. (In a $f'(x) = \frac{u'(x) \varphi(x) - u(x) \varphi'(x)}{\varphi(x)^2}$ et w(x) = 2 w(x) w(x) $d'ou f'(x) = \frac{2(x-2)(x^2-1) - (x-2)^2 \times 2x}{(x^2-1)^2} = \frac{(x-2)[2(x^2-1) - 2x(x-2)]}{(x^2-1)^2}$ $f'(x) = \frac{(x-2)(2x^2-2-2x^2+4x)}{(x^2-1)^2} = \frac{(x-2)(4x-2)}{(x^2-1)^2} = \frac{4x^2-10x+4}{(x^2-1)^2}$ 4) Si $x \in \mathcal{D}$, $(x^2-1)^2 > 0$ donc f'(x) est du signe de (x-2)(4x-2):

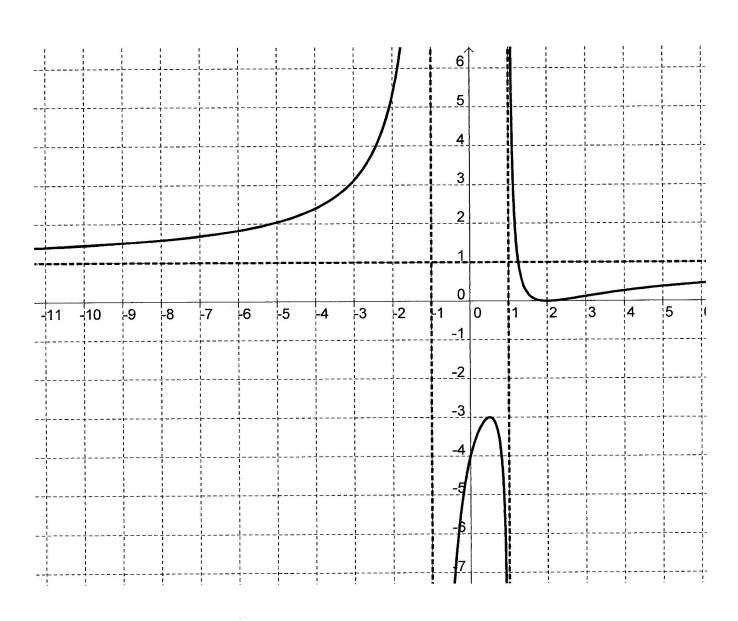
D'où l'on déduit finalement:

Détails:
$$f(2) = \frac{(2-2)^2}{2^2-1} = \frac{0}{3} = 0$$

et $f(\frac{1}{2}) = \frac{(\frac{1}{2}-2)^2}{(\frac{1}{2})^2-1} = \frac{\frac{9}{4}}{-\frac{3}{4}} = -3$

x	-00 -1	1 1/2	, 1		2	+00
g'(x)	+	+ 3		_	Ŷ	+
Ş	1 +00		- 00	+ 0	, o .	1

Voici, à titre de curiosité, l'allure du graphe de f:



(en pointillés gras, les asymptotes)

 $[\overline{\mathbf{III}}]$ 1)a) h est dérivable sur \mathbb{R} par produit et somme et pour tout réel x, $h'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1)$. On en déduit :

x	$-\infty$		-1		1	α	$+\infty$
x+1		_	0	+		+	
x-1		_		_	0	+	
h'(x)		+	0	_	0	+	
h	$-\infty$		-1		_5	_0	+∞

((détails :
$$h(-1) = (-1)^3 - 3 \times (-1) - 3 = -1$$
 et $h(1) = 1^3 - 3 \times 1 - 3 = -5$))

Si $x \neq 0$, on a $h(x) = x^3 \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right)$. Par produit et somme, on a $\lim_{x \to -\infty} \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right) = 1 + 0 + 0 = 1$ et comme $\lim_{x \to -\infty} x^3 = -\infty$, on obtient par produit : $\lim_{x \to -\infty} h(x) = -\infty$. De même $\lim_{x \to +\infty} \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right) = 1 + 0 + 0 = 1$ et comme $\lim_{x \to +\infty} x^3 = +\infty$, on déduit par produit que $\lim_{x \to +\infty} h(x) = +\infty$.

- **1)b)** D'après son tableau des variations, la fonction h possède un maximum égal à -1 sur $]-\infty;1]$. Par conséquent, pour tout $x \leq 1$, on a $h(x) \leq -1 < 0$, ce qui entraı̂ne que l'équation h(x) = 0 ne possède aucune solution dans $]-\infty;1]$.
- La fonction h est continue (car dérivable, cf 1.a.) et strictement croissante sur $]1; +\infty[$; on a : h(1) = -5 et $\lim_{x \to +\infty} h(x) = +\infty$, donc $0 \in h(1); \lim_{x \to +\infty} h(x)$ et d'après le corollaire du T.V.I., l'équation h(x) = 0 possède une unique solution α dans $]1; +\infty[$.
- Bilan : l'équation h(x)=0 possède pour unique solution α dans \mathbb{R} . La calculatrice fournit : $2,1<\alpha<2,11$.
- 1)c) On déduit du tableau des variations de h (complété, cf 1.a.) :

x	$-\infty$		α		$+\infty$
h		_	0	+	

2)a) $x \stackrel{u}{\mapsto} x^3 - 7x - 21$ est dérivable sur \mathbb{R} par produit et somme et $x \stackrel{v}{\mapsto} \sqrt{x}$ est dérivable sur $]0; +\infty[$, par conséquent f = uv est dérivable sur $]0; +\infty[$ de dérivée f' = u'v + uv'. Ainsi, pour tout x > 0, $f'(x) = (3x^2 - 7)\sqrt{x} + (x^3 - 7x - 21) \times \frac{1}{2\sqrt{x}}$, soit :

$$f'(x) = \frac{2(3x^2 - 7)\sqrt{x^2 + x^3 - 7x - 21}}{2\sqrt{x}} = \frac{2x(3x^2 - 7) + x^3 - 7x - 21}{2\sqrt{x}} \text{ et finalement :}$$

$$f'(x) = \frac{6x^3 - 14x + x^3 - 7x - 21}{2\sqrt{x}} = \frac{7x^3 - 21x - 21}{2\sqrt{x}} = \frac{7h(x)}{2\sqrt{x}}.$$

2)b) Comme 7 > 0 et $2\sqrt{x} > 0$ lorsque x > 0, on déduit que f' est du signe de h sur $]0; +\infty[$. D'où, d'après 1.c. :

x	0	α		$+\infty$
f'(x)		- 0	+	
f	0	$f(\alpha)$		$+\infty$

((détail :
$$f(0) = (0^3 - 7 \times 0 - 21) \times \sqrt{0} = 0$$
))

Si $x \neq 0$, on a $x^3 - 7x - 21 = x^3 \left(1 - \frac{7}{x^2} - \frac{21}{x^3}\right)$. Par produit et somme, on a $\lim_{x \to +\infty} \left(1 - \frac{7}{x^2} - \frac{21}{x^3}\right) = 1 + 0 + 0 = 1$ et comme $\lim_{x \to +\infty} x^3 = +\infty$, on obtient par produit : $\lim_{x \to +\infty} (x^3 - 7x - 21) = +\infty$. Or $\lim_{x \to +\infty} \sqrt{x} = +\infty$, d'où par produit : $\lim_{x \to +\infty} f(x) = +\infty$.

2)c) On a
$$h(\alpha) = 0$$
 donc $\alpha^2 - 3\alpha - 3 = 0$, soit $\alpha^3 = 3\alpha + 3$.
Or $f(\alpha) = (\alpha^3 - 7\alpha - 21)\sqrt{\alpha}$, donc $f(\alpha) = (3\alpha + 3 - 7\alpha - 21)\sqrt{\alpha}$, soit : $f(\alpha) = (-4\alpha - 18)\sqrt{\alpha} = -2(2\alpha + 9)\sqrt{\alpha}$.

D'après son tableau des variations (cf 2.b.), f possède donc bien un minimum égal à $-2(2\alpha+9)\sqrt{\alpha}$ sur $[0;+\infty[$.