Correction de la question II.2.b du polycopié « Exercices sur la continuité »

Si $x \in \mathbb{R}$, on a $(x^2 - x + 1)^2 > 0$ donc f'(x) a le même signe que xg(x). Par conséquent :

x	$-\infty$		c		0		$+\infty$
x		_		_	0	+	
g(x)		_	0	+		+	
f'(x)		+	0	_	0	+	
f	$-\infty$		f(c)		~ ₀ /		$+\infty$

(détail :
$$f(0) = \frac{0^3 + 3 \times 0^2}{0^2 - 0 + 1} = 0$$
)

Soit
$$x \in \mathbb{R}^*$$
; on a $f(x) = \frac{x^3 + 3x^2}{x^2 - x + 1} = \frac{x^2(x+3)}{x^2 - x + 1} = \frac{x+3}{1 - \frac{1}{x} + \frac{1}{x^2}}$.

- Par somme on a $\lim_{x \to -\infty} (x+3) = -\infty$ et $\lim_{x \to -\infty} \left(1 \frac{1}{x} + \frac{1}{x^2}\right) = 1 0 + 0 = 1$ donc par quotient, $\lim_{x \to -\infty} f(x) = -\infty$.
- Par somme on a $\lim_{x\to +\infty}(x+3)=+\infty$ et $\lim_{x\to +\infty}\left(1-\frac{1}{x}+\frac{1}{x^2}\right)=1-0+0=1$ donc par quotient, $\lim_{x\to +\infty}f(x)=+\infty$.
- \rightarrow À titre de curiosité, voici l'allure de la représentation graphique de f :

